User **Manual**

Manual number: ITKU-13-04-03-15-A

Scales for recipes:

- WPW/R
- WPW/R/H

MANUFACTURER OF ELECTRONIC **WEIGHING INSTRUMENTS**

RADWAG 26 - 600 Bracka 28 Street - POLAND Radom, phone +48 48 384 88 00, phone/fax +48 48 385 00 10, Sales Department +4848 366 80 06

www.radwag.com

Table of contents

1. INTENDED USE	7
2. PRECAUTIONARY MEASURES	8
2.1. Precautions	
2.2. Accumulator/battery pack	8
2.3. Operation in a strong electrostatic field	g
2.4. Washing scales intended for meat processing industry	g
3. WARRANTY CONDITIONS	
4. MAIN DIMENSIONS	
5. DESCRIPTON OF CONNECTORS	
6. UNPACKING AND MOUNTING	
7. GETTING STARTED	
8. KEYBOARD	
9. PICTOGRAMS	
9.1. Battery charge indication	
10. FUCTIONS OF KEYS	
11. MENU - PARAMETERS	
11.1. Overview of parameters	
11.2. Navigating within the menu level	
11.2.1. Keyboard	
11.2.2. Quick access	
11.3. Return to weighing	
12. WEIGHING	
12.1. Operating conditions.	
12.2. Tarring	
12.3. Inscribing tare value	
12.3. Inscribing lare value	
12.5. Weighings in two ranges	
12.6. Toggling between weight units	
12.6.1. Selection of basic unit	
12.6.2. Loggling between weight units	20
13. MAIN PARAMETERS	20
13. MAIN PARAMETERS.	21
13.1. Filtering level	
13.2. Median filter	
13.3. Dosing filter setting	20
13.4. Minimal mass parameter	ا
13.5. Tare function	
13.6. Autozero	
14. PORTS PARAMETERS	
14.1. RS 232, RS 485 setting	
14.1.1. Baud rate of RS 232	
14.1.3. RS 232 parameters	
14.1.4. Setting of RS 485 parameters	
14.1.4. Setting of RS 485 parameters	
14.2. ETHERNET Setting	
15.1. Cooperation with a computer	3č
15.1.1. Select the communication port scale-computer	აი
15.1.2. Type of printout scale – computer	
15.1.3. Address setting	
15.1.4. Order operating of communication protocol	40
15.1.3. Cooperation with grant System	41
15.2. Cooperation with printers	43
15.2.1. Communication port scale - printer	43
15.3. Cooperation with a barcode scanner	44
15.3.1. Select a communication port for the scanner	44
15.3.2. Setting the START parameter	
15.3.3. Setting the LENGTH parameter	46

15.4. Cooperation with a transponder card reader	40
15.4.1. Selecting of communication port	47
15.4.2. Procedure of ascribing card numbers to operators	47
15.5. Cooperation with an additional display	48
15.5.1. Selecting a communication port	48
15.5.2. Selecting an additional display type	40
16. DATE / TIME SETTING	
16.1. Time view	
16.2. Time setting	
16.3. Date format	
17. PRINTOUTS	
17.1. Printout type	52
17.2. Printout of stable / unstable data	
17.3. Checkweighing mode	54
17.4. Non-standard printouts	5
17.5. Designing non-standard printouts	
17.6. Texts in non-standard printouts	56
17.6.1. Code format	56
17.6.2. Variables appearing in all modes	57
17.6.3. Variables for printing out weighings from the database	
17.6.4. Variables for printouts of reports from weighings	
17.6.5. Variables for printouts of reports from recipes	60
17.6.6. Special characters that can be used in non-standard printouts	
18. DATABASES	
18.1. Logging in	
18.2. Access level.	
18.2.1. Access level to edition of databases	
18.2.2. Access level for disabled logging	
18.3. Password type	
18.4. Type of codes	
18.5. Access to edition of databases	
18.6. Quick searching in databases	
18.6.1. Quick code search	
18.6.2. Quick name search	
18.6.3. Quick number search	
18.7. User database	69
18.8. Assortment database	7′
18.9. Database of recipes	73
18.10. Weighings database	
18.11. Database of tare values	76
18.12. General purpose variables	
18.12.1. Editing general purpose variables	7.
18.12.2. General purpose variables in printouts	78
19. REPORTS	
19.1. Reports from weighings	
19.1.1. Editing reports	70
19.1.2. Printouts of reports	Ω(
19.2. Reports from recipes	
20. CONFIGURATION OF EXTERNAL INPUTS / OUTPUTS	
20.1. Configuration of external buttons	
20.2. Configuration of outputs	
21. STATISTICS	
21.1. Updating statistics	
21.2. Printouts of statistics.	
21.3. Zeroing statistics	
22. OTHER PARAMETERS	
22.1. Language setting	
22.2. LED power setting	
22.3. Work modes for LEDs	
22.4. Automatic power down	90
22.5. Backlight	

	22.5.1. Backlight – power supply from mains	9 ⁻
	22.5.2. Backlight - power supply from the accumulator	92
	22.6. "Beep" sound – key-press reaction	92
	22.7. Keypad modes	93
	22.8. Software version view	94
23.	SCALE CALIBRATION	
	23.1. Calibration procedure	
	23.2. Start mass adjustment	
24.	WORK MODES	
	24.1. Accessibility of work modes	
	24.2. Programmable keys	98
	24.3. +/- control according to an inscribed standard mass	100
	24.4. Maximal force latch	
	24.5. Counting pieces	
	24.5.1. Enabling work modes	
	24.5.2. Setting standard mass by inscribing the mass of a single piece	
	24.5.3. Setting the standard mass by declaring the quantity of a sample	
	24.6. Deviation in percents in relation to a standard mass	101
	24.6.1. Starting weighing in per cents	
	24.6.2. Weighing a standard mass	
	24.6.3. Inscribing a standard mass	
	24.7. Weighing animals	
	24.7.1. Weighing time setting	
	24.7.1. Weighing time setting	101
	24.7.3. Procedure of weighing animals	100
	24.8. Recipes – filling/dosing	100
	24.8.1. Recipe multiplier	
	24.8.2. Setting tare in the filling/dosing mode	103
	24.8.3. Manual confirmation of every ingredient	
	24.8.4. Number of cycles declaration	
	24.8.5. Chute time delay.	
	24.8.6. Automatic printout of report	
	24.8.7. Negative dosing	
	24.8.8. Product series number	
	24.8.9. Additional product	
	24.8.10. Work mode setting	1 10 141
٥.		
	DIAGRAMS OF CONNECTION CABLES	
26.	CONNECTORS	
	26.1. 3IN/3OUT connector	
	26.2. RS232, RS485 connector	
27.	SPECIFICATION OF ADDITIONAL MODULES	
	27.1. Ethernet module - ET	
	27.1.1. Mounting way in PUE C41H	12
	27.1.2. Drawings of sockets and cables for Ethernet	12
	27.2. Analogue output module	12
	27.2.1. Technical specification	128
	27.2.2. The way of installing inside PUE C41H	128
	27.2.3. Configuration of work modes of analogue modules	129
	27.2.4. Connections to AN module	
	27.3. Relay module - PK1	13
	27.3.1. Technical specification	13
	27.3.2. Installing in PUE C41H indicators	
	27.3.3. Drawing of cables and outputs	
	27.4. WE 4 - 4 inputs / 4 outputs module	133
	27.4.1. Technical specification	
	27.4.2. Colours of cables for I/O	134
	27.4.3. Installing method in PUE C41H indicators	
	27.5. WE 8 - 8 inputs / 8 outputs module	
	27.5.1. Technical specification	
	27.5.2 Installing method in PLIE C41H indicators	126

	27.5.3. I/O diagram	.137
	27.5.4. Description of input output wires	.138
	27.6. DP1 – module for an additional platform	
	27.6.1. Technical specification	
	27.6.2. Colours of wires	.139
	27.6.3. Connecting additional platforms	.140
	27.6.4. Installing in PUE C41H housing	
	27.7. RS485 led out via RS 1D gland	.144
	27.7.1. Installing inside the PUE C41H housing	
	27.7.2. RS 485 - PT0012 cable drawing	.145
28.	COMMUNICATION PROTOCOL	.146
	28.1. General information	.146
	28.2. A set of commands for RS interfaces	
	28.3. Respond message format	
	28.4. Command's description	.147
	28.4.1. Zeroing	
	28.4.2. Tarring	
	28.4.3. Get tare value	
	28.4.4. Set tare value	
	28.4.5. Send the stable result in basic unit	.149
	28.4.6. Send the result immediately in basic unit	.150
	28.4.7. Get immediate results from both platforms in basic units	.150
	28.4.8. Send the stable result in current unit	
	28.4.9. Send the result immediately in current unit	.152
	28.4.10. Switch on continuous transmission in basic unit	.152
	28.4.11. Switch off continuous transmission in basic unit	
	28.4.12. Switch on continuous transmission in current unit	.153
	28.4.13. Switch off continuous transmission in current unit	. 153
	28.4.14. Lock the scale keyboard	
	28.4.15. Unlock the scale keyboard 28.4.16. Initiating of dosing/filling	
	28.4.17. Stop of dosing/filling	154
	28.4.19. Set upper threshold	
	28.4.20. Read lower threshold	
	28.4.21. Read upper threshold	
	28.4.22. Send all implemented commands	
	28.5. Manual printouts / automatic printouts	156
	28.6. Continuous transmission	
	28.7. Configuring printouts.	
20	ERROR MESSAGES.	
	TROUBLE SHOOTING	
	TECHNICAL PARAMETERS	
٠	31.1. Scales for recipes - WPW/R	150
	31.2. Scales for recipes - WPW/R/H	160
32	APPENDIX	
	32.1. Communication with barcode scanners	
	32.2. Cooperation with "EDYTOR WPW" – PC software tool	162
	32.2.1. Main window	.163
	32.2.2. Setting parameters of RS232	
	32.2.3. Setting Ethernet parameters	
	32.3. An example application for dosing recipes	
	32.4. Example of designing non-standard printouts.	. 170
	32.5. Example of creating a complex report	
	22.6 Examples of surge protections	

1. INTENDED USE

Scales with PUE C41H terminal are industrial scales with a possibility of working in high humidity and a wide temperature range -10 \div 40°C. The terminal is equipped with fields of LEDs (light emitting diodes). Tarring within the whole range of measurement allows to determine the net mass of loads.

Functions:

- Tarring within the whole measuring range,
- Inscribing tare value,
- Automatic tare,
- Automatic print,
- Continuous transmission,
- Printout configuration (stable/immediate),
- · Designing printouts,
- Minimal mass.
- Force measurements in Newtons,
- Cooperation with computers,
- Cooperation with printers,
- Cooperation with external industrial buttons ZERO, TARA, PRINT,
- Cooperation with a barcode scanner,
- Cooperation with a transponder card reader,
- Totalizing,
- +/- control (checkweighing),
- Deviation in percents,
- Top mass latch,
- Dosing / Formulation,
- Counting pieces,
- · Weighings animals.

User functions may have attribute of accessibility. For this reason it is possible to adjust scale to individual needs to provide access to only these functions which are currently needed. Attribute determination accessible / inaccessible is possible in user menu and described in further part of manual.

2. PRECAUTIONARY MEASURES

2.1. Precautions

- A. Please, read carefully this user manual before and use the device according to its intended use,
- B. Devices that are to be withdrawn from usage should be sent back to the producer or in case of own utilization do it according to the law.

2.2. Accumulator/battery pack

WPW scales include gel cell accumulators **SLA** (*Sealed Lead Acid type*) **6V 3** to **4Ah** of capacity. The device connected to mains inteligently monitors the battery state and charges it if possible. After sudden lack of power supply from the mains the device automatically switches to accumulator without breaking operation.

In case of an prolonged storage period in low temperatures, it is not allowed the full discharge of the accompanied batteries.

The worn out accumulator can be exchanged to a new one by the authorized sernice of the manufacturer.

The equipment including accumulators does not belong to your regular household waste. The European legislation requires that electrical and electronic equipment be collected and disposed separately from other communal waste with the aim of being recycled.

Notice:

Some symbols on accumulators identify harmful elements:

Pb = lead,

Cd = cadmium,

Hg = mercury.

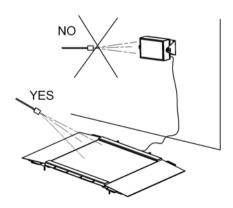
2.3. Operation in a strong electrostatic field

If the device is about to operate in a strong electrostatic field (e.g. printing houses etc.) it should be connected to the earthing. Connect it to the clamp terminal signed $\frac{1}{2}$.

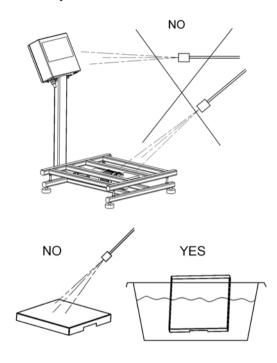
2.4. Washing scales intended for meat processing industry

Weighing platforms are made of stainless steel (according to standards PN–0H18N9, EN-1.4301, AISI–304) and silicon elements.

There is an exception, zinc coated overhead scales and painted livestock scales made of mild constructional steel with aluminium cover plate on the platform, polyester overlays and stainless steel or polyamide glands.


Caution:

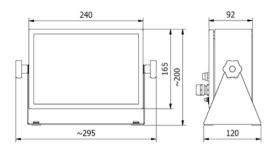
Washing and disinfection agents should be matched to the scale.


Platforms of ramp and livestock scales as well as load-bearing structures and weighing tracks of overhead scales can be washed with jet of water (temp. up to +80°C) with an appropriate washing agent. Washing measuring indicators/weighing terminals with the jet of hot water is not allowed

Caution:

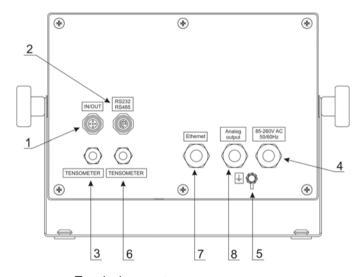
It is advisable to cover measuring indicators/weighing terminals while washing their surrounding with the jet of water.

To wash waterproof platform scales and indicators/terminals neither jet of water nor hot water shall be used, in order not to damage the silicon gaiter that covers the load cell inside the platform and the overlay or glands in the indicator/terminal. To wash pans of platform scales they should be taken off first. Then they can be washed ether with the jet of water or by immersion.



-	Туре:	Water with detergent	Jet of water	Hot water – max 80°C
Ramp scales	Platforms with tracks	yes	yes	yes
Namp scales	Indicator/terminal	yes	no	no
Livestock scales	Platform with railing	yes	yes	yes
Livestock scales	Indicator/terminal	yes	no	no
Overhead scales	Load bearing structure with he load cell	yes	yes	yes
	Indicator/terminal	yes	no	no
Dietferme	Platform	yes	no	no
Platform waterproof scales	Indicator/terminal	yes	no	no
waterproof scales	Taken off pan	yes	yes	yes

3. WARRANTY CONDITIONS


- RADWAG is obliged to repair or change those elements that appears to be faulty because of production and construction reason,
- B. Defining defects of unclear origin and outlining methods of elimination can be settled only in participation of a user and the manufacturer representatives.
- C. RADWAG does not take any responsibility connected with destructions or losses derives from non-authorized or inappropriate (not adequate to manuals) production or service procedures,
- D. Warranty does not cover:
 - Mechanical failures caused by inappropriate maintenance of the device or failures of thermal or chemical origin or caused by atmospheric discharge, overvoltage in mains or other random event,
 - · Inappropriate cleaning.
- E. Loss of warranty appears after:
 - · Access by an unauthorized service,
 - Intrusion into mechanical or electronic construction of unauthorized people,
 - Removing or destroying protection stickers.
- F. The detailed warranty conditions one can find in warranty certificate.
- G. Contact with the central authorized service: +48 48 384 88 00 ext. 106 or 107.

4. MAIN DIMENSIONS

Main dimensions of PUE C41H

5. DESCRIPTON OF CONNECTORS

Terminal connectors

- 1 I/O connectors
- 2 RS232, RS485 connector
- 3 Tensometer gland
- 4 Power supply gland
- 5 Earthing terminal
- 6 Additional platform gland (option)
- 7 –Ethernet gland (option)
- 8 analogue output gland voltage or current loop (option)

Caution:

In accordance to the number of mounted modules the number and the placement of glands and connectors can vary. Connectors and glands mentioned in the standard solution appears in every option in the same place regardless of the option.

6. UNPACKING AND MOUNTING

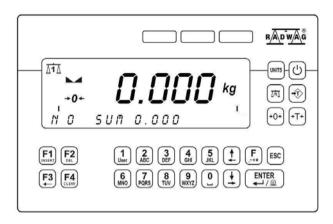
- A. Take the device out of the package,
- B. Put the scale on an even stiff ground,
- C. Level the platform using an external or internal level condition indicator. Use levelling feet to do it.

level - OK

level incorrect

7. GETTING STARTED

- Switch off the scale using keep pressing it for about 0.5 sec,
- Wait for the test completion,
- Then you will see zero indication and following pictograms displayed:



- equilibrium

kg - weight unit

If the indication is not zero – press zero button.

8. KEYBOARD

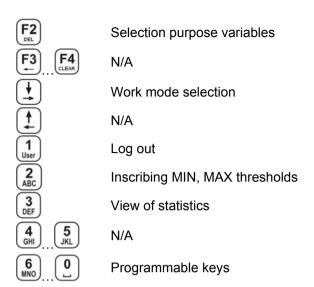
9. PICTOGRAMS

No	Pictogram	Description
1.	+0+	Zero indication (Autozero zone)
2.		Equilibrium
3.	kg (g)	Weighing mode
4.	()	Battery/accumulator
5.	Net	Tare has been introduced
6.	Min	Lower threshold
7.	ОК	Proper mass
8.	Max	Upper threshold or TOP mode
9.	<u>**</u>	Counting pieces
10.	%	Weighings in percents
11.	•	Animals weighings
12.	4	Dosing / filling in recipes
13.		Bargraph
14.	<u> </u>	First platform
15.	<u> </u>	Second platform
16.	→ 2 ←	Second range of weightings'
17.	·< 🔲	Communication with a computer

9.1. Battery charge indication

pictogram is situated in the upper right corner informed about the discharge level or charging process:

- Impictogram blinks: accumulator damaged or no accumulator,
- pictogram displayed continuously: it is charge between 70% and 100%,


- Internal elements of pictograms are displayed in sequence: charging,
- No pictogram: power supply from mains, battery charges.

10. FUCTIONS OF KEYS

Deceription

Kovo

Keys	Description
(h)	Turning on/off the scale
UNITS	Toggling between weight units
Δ'nΔ	Changing active platform
- Ŷ	Inscribing tare value
+0+	Zeroing
* T *	Tarring
F	Function key (entering the menu)
ESC	Leaving a function without saving or reaching a higher level of the menu
ENTER ← / ⊚	Printing out the result or confirming some entered data
F1	Selection / viewing of articles from the assortment database

Caution:

After pressing, functions of keys change while in the menu. The way of using them is described farther.

11. MENU - PARAMETERS

11.1. Overview of parameters

The menu has been divided into **10** basic groups. Each group has its individual name starting with the capital letter **P**. Names of groups and their contents are shown below.

PARAMETERS

P 1 SCALE PARAMETERS

P 1.1 PLATFORM 1 PAR.		
P 1.1.1 FITER	- 1	AVERAGE
P 1.1.2 MED. FILTER	į	YES
P 1.1.3 LO THRESH.	ĺ	20 d
P 1.1.4 TARE MODE	ĺ	STDRD
P 1.1.5 START UNIT		kg
P 1.1.6 AUTOZERO	ĺ	YES
P 1.1.7 DOS. FILTER		1
P 1.2 PLATFORM 2 PAR.		

P 1.2.1 FITER	AVERAGE
P 1.2.2 MED. FILTER	YES
P 1.2.3 LO THRESH.	20 d
P 1.2.4 TARE MODE	STDRD
P 1.2.5 BASIC UNIT	kg
P 1.2.6 AUTOZERO	YES
P 1.2.7 DOS. FILTER	1
P 1.3 FACTORY NO	0
P 2 COM PORTS PARAMETERS	
P 2.1 RS 485	
P 2.1.1 BAUD RATE	9600
P 2.1.2 DATA BITS	8
P 2.1.3 PARITY BIT	NO
P 2.1.4 STOP BITS	1
P 2.2 RS 232 (1)	
P 2.2.1 BAUD RATE	9600
P 2.2.2 DATA BITS	8
P 2.2.3 PARITY BIT	NO
P 2.2.4 STOP BITS	1
P 2.3 RS 232 (2)	
P 2.3.1 BÀUD RATE	9600
P 2.3.2 PARITY BIT	NO
P 2.4 ETHERNET	
P 2.4.1 COMM MODE	SERVER
P 2.4.2 IP ADDRESS	192.168.0.2
P 2.4.3 SUBNET MSK.	255.255.255.0
P 2.4.4 GATEWAY	192.168.0.1
P 2.4.5 LOCALPORT	4001
P 2.4.6 HOST IP	192.168.0.3
P 2.4.7 HOST PORT	2000
P 2.4.8 TIMEOUT	60
P 3 DEVICES	
P 3.1 COMPUTER	
P 3.1.1 COMP.PORT	NO
P 3.1.2 ADDRESS	1
P 3.1.3 COMP. PRINT	NONE
P 3.1.4 BASIC TRS.	YES
P 3.1.5 SYSTEM E2R	NO
P 3.2 PRINTER	
P 3.2.1 PRINT PORT	NO
P 3.3 BARCODE SCANNER	
P 3.3.1 BARCOD. COM	NO
P 3.3.2 START	0
P 3.3.3 LENGTH	0
P 3.4 TRANSP. CARD READER	
P 3.4.1 READER COM	NO
P 3.5 ADDITIONAL DISPLAY	
P 3.5.1 DISPL. PORT	NO
P 3.5.2 DISPL. TYPE	LCD

P 4 DATE / TIME

P 4.1 DISPL. TIME | * FUNCTION *
P 4.2 SET TIME | * FUNCTION *
P 4.3 DAT. FORMAT | YY-MM-DD

P 5 PRINTOUTS

P 5.1 AUTO, PRINT WHEN STAB P 5.2 STAB. PRINT YES P 5 3 CHECKWEIGHING NO P 5 4 PRINTOUT STANDARD P 5.5 PRINTOUT 1 * FUNCTION * P 5.6 PRINTOUT 2 * FUNCTION * * FUNCTION * P 5 7 PRINTOUT 3 * FUNCTION * P 5 8 PRINTOUT 4

P 6 DATABASES

 P 6.1 LOGGING
 | NO

 P 6.2 EDITION
 | ADMIN

 P 6.3 ANON. ACC.
 | ADMIN

 P 6.4 PASS. TYPE
 | NUM

 P 6.5 CODE TYPE
 | NUM

 P 6.6 STATISTICS
 | GENERAL

P 7 WORK MODES

P 7.1 MODE ACCES.

P 7.1.1 WEIGHING | YES

P 7.1.2 TOP | YES

P 7.1.3 COUN. PCS | YES

P 7.1.4 CHECKWEIGH. | YES

P 7.1.5 ANIM. WEIGH. | YES

P 7.1.6 DOSAGE | YES

P 7.1.7 INTER. TERM. | YES

P 7.2 BUTTONS FUNCTIONS

P 7.2.1 B6 | NONE P 7.2.2 B7 | NONE P 7.2.3 B8 | NONE P 7.2.4 B9 | NONE P 7.2.5 B0 | NONE

P 7.3 ANIM. WEIGH.

P 7.3.1 WEIGH. TIME | 15

P 7.4 FORMULATION

P 7.4.1 MULTIPLIER 1 000 P 7.4.2 TARRING NONE P 7.4.3 INGRED, CONF. NO P 7.4.4 ASK REPT. NO NO P 7.4.5 CHUTE TIME 5 P 7.4.6 AUT. T. PRN NO P 7 4 7 MINUS DOSING NO P 7.4.8 CHECK BATCH NUMBER NONE

P 8 I/O CONFIG

P 0 1/0 CONFIG	
P 8.1 EXTERNAL BUTTONS	
P 8.1.1 TARE BUTT.	l NO
P 8.1.2 PRINT BUTT.	j NO
P 8.1.3 ZERO BUTT.	j NO
P 8.1.4 START BUTT.	j NO
P 8.1.5 STOP BUTT.	j NO
P 8.1.6 EXT. START	j NO
P 8.1.7 TERM. BUTT.	j NO
P 8.1.8 CHUTE PERM.	j NO
P 8.1.9 DOSE PERM.	NO
P 8.2 OUTPUT CONF.	
P 8.2.1 MIN	NO
P 8.2.2 OK	NO
P 8.2.3 MAX	NO
P 8.2.4 STABLE	NO
P 8.2.5 CHUTE PL 1	NO
P 8.2.6 CHUTE PL 2	NO
P 8.2.7 DOSE SIGNAL.	NO
P 9 OTHER	
P Q 1 I ANGLIAGE	I ENGLISH
P 9.1 LANGUAGE	ENGLISH
P 9.2 DIODES	
P 9.2 DIODES P 9.2.1 LED POWER	100%
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES	100% NON-STAB.
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD.	100% NON-STAB. STABLE
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE	100% NON-STAB.
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT	100% NON-STAB. STABLE NO
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS	100% NON-STAB. STABLE
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER.	100% NON-STAB. STABLE NO YES 100%
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS	100% NON-STAB. STABLE NO
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE	100% NON-STAB. STABLE NO YES 100% YES ABC2
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE P 9.7 SOFT. VER.	100% NON-STAB. STABLE NO YES 100% YES
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE P 9.7 SOFT. VER. P 10 USER CALIB.	100% NON-STAB. STABLE NO YES 100% YES ABC2
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE P 9.7 SOFT. VER. P 10 USER CALIB. P 10.1 PLATF. 1 CALIB	100% NON-STAB. STABLE NO YES 100% YES ABC2 WTLR 1.6.5
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE P 9.7 SOFT. VER. P 10 USER CALIB. P 10.1 PLATF. 1 CALIB P 10.1.1 STRT M. ADJ.	100% NON-STAB. STABLE NO YES 100% YES ABC2 WTLR 1.6.5
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE P 9.7 SOFT. VER. P 10 USER CALIB. P 10.1 PLATF. 1 CALIB P 10.1.1 STRT M. ADJ. P 10.1.2 CALIBRATION	100% NON-STAB. STABLE NO YES 100% YES ABC2 WTLR 1.6.5
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE P 9.7 SOFT. VER. P 10 USER CALIB. P 10.1 PLATF. 1 CALIB P 10.1.1 STRT M. ADJ. P 10.1.2 CALIBRATION P 10.2 PLATF. 2 CALIB	100% NON-STAB. STABLE NO YES 100% YES ABC2 WTLR 1.6.5 * FUNCTION *
P 9.2 DIODES P 9.2.1 LED POWER P 9.2.2 RED DIODES P 9.2.3 GREEN DIOD. P 9.3 POWER SAVE P 9.4 BACKLIGHT P 9.4.1 BL MAINS P 9.4.2 BL BATTER. P 9.5 BEEP P 9.6 KEYPAD TYPE P 9.7 SOFT. VER. P 10 USER CALIB. P 10.1 PLATF. 1 CALIB P 10.1.1 STRT M. ADJ. P 10.1.2 CALIBRATION	100% NON-STAB. STABLE NO YES 100% YES ABC2 WTLR 1.6.5

11.2. Navigating within the menu level

Use keyboard to browse the menu.

11.2.1. Keyboard

Entering the main menu, special characters in the editing field Entering the search procedure of records in databases

Moving up (left)

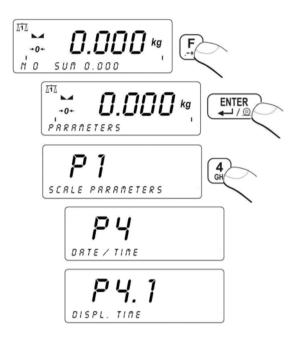
Moving down (right)

Adding records in a database adding characters in an editing field

Clearing the editing field
Erasing a record in a database
Selecting and editing general purpose variables

F3 START of dosing procedure START of weighings animals Deleting characters in editing field

Clearing editing field deleting database zeroing statistics


Entering submenus entering parameters confirming changes

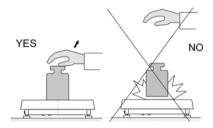
Skipping changes leaving the menu level

11.2.2. Quick access

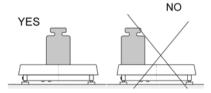
It is possible to move quickly within the parameters' menu using to to to

Procedure:

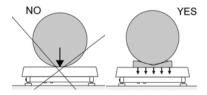
11.3. Return to weighing

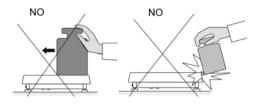

12. WEIGHING

Put a load you want to weigh on the weighing pan. When the pictogram appears it means that the result is stable and ready to read.


12.1. Operating conditions

In order to assure long-term operation and appropriate measurements of weighted loads following precautions should be taken into consideration:


 Loads should be placed on the pan delicately and carefully in order to avoid mechanical shocks:


 Loads should be placed centrally on the pan (errors caused by eccentric weighing are outlined by standard PN-EN 45501 ch. 3.5 and 3.6.2):

Do not load the pan with concentrated force:

Avoid side loads, particularly side shocks should be avoided:

12.2. Tarring

In order to determine the net mass put the packaging on the pan.

After stabilising press - (Net pictogram will be displayed in the left upper corner and zero will be indicated).

After placing a load on the weight pan net mass will be shown. Tarring is possible within the whole range of the scale. After unloading the pan the display shows the tarred value with minus sign.

Caution:

Tarring cannot be performer when a negative or zero value is being displayed. In such case **Err3** appears on the display and a short beep sound will be emitted.

12.3. Inscribing tare value

You can also inscribe a tare value:

Procedure:

While in weighings mode:

- Press
- In the lower line you will see an editing field:

Inscribe the tare value:

- Press ENTER
 ← /②
- The scale return to weighings mode The inscribed tare value can be seen on the display with "—" sign.

Tare can be inscribed anytime in weighings mode.

12.4. Zeroing

To **ZERO** the scale press: $^{+0+}$

The scale will display zero and following pictograms: $^{\bullet}0^{\bullet}$ and $^{\bullet}$. Zeroing is only possible within the scope of $\pm 2\%$ of full scale. While zeroing outside the scope of $\pm 2\%$ you will see **Err2**.

Zeroing is possible only in stable state.

Caution:

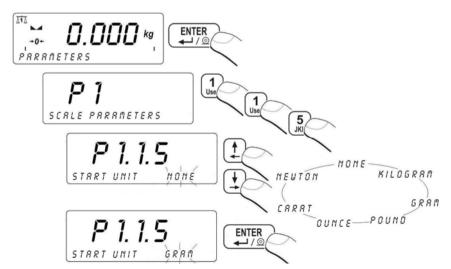
Zeroing is possible only within ±2% of full range around zero. If the zeroed value is beyond the interval of ±2%, *Err2* is displayed and a short beep sound will be emitted.

12.5. Weighings in two ranges

Switching between the **I range** and the **II range** happens automatically (exceeding Max of the **I range**).

Weighings in the second range is signalled by a pictogram in the top left corner of the display.

Then weighings is done with the accuracy of the **II range** to the moment of returning to zero (autozero range $^{+}O^{+}$) where the scale switches back to the **I range**.


12.6. Toggling between weight units

12.6.1. Selection of basic unit

This function sets the unit that will be set after powering on.

Procedure:

• While In weighings mode press and then:

Selection:

- When the main unit is [kg], users can select among: [kg, lb, oz, ct, N, g], for verified scales [lb, oz, N] are not accessible;
- When the main unit is [g], users can select among: [g, kg, lb, oz, ct, N], for verified scales [lb, oz, N] are not accessible.

12.6.2. Toggling between weight units

Press the **Units** key to toggle between weight units.

Accessible units:

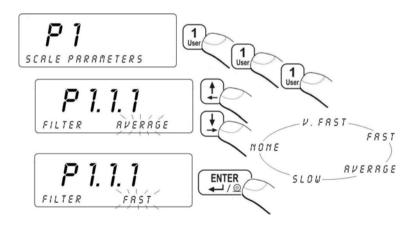
- When [kg] is the basic unit, users can toggle between: [kg, lb, oz, ct, N, g]. For verified scales [lb, oz, N] are not accessible;
- When [g], is the basic unit, users can toggle between:
 [g, kg, lb, oz, ct, N] For verified scales [lb, oz, N]
 are not accessible.

Notice:

The terminal always starts working with the main (calibration) unit.

12.7. Switching between platforms

If a scale is equipped with two platforms press to change the platform. The active platform is signalled by pictograms in the top left corner of the display.


13. MAIN PARAMETERS

Users can adjust the scale to external ambient conditions (filtering level) or particular needs (autozero operation, tare memory). This parameters are present in <P1 SCALE PARAMETERS>.

13.1. Filtering level

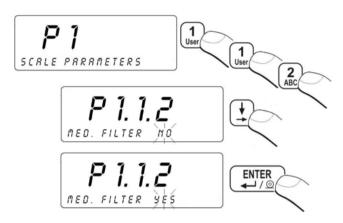
Procedure:

Enter <P1 SCALE PARAMETERS> and then:

Return to weighing:

See 11.3.

Notice:


The higher filtering level the longer stabilization time.

13.2. Median filter

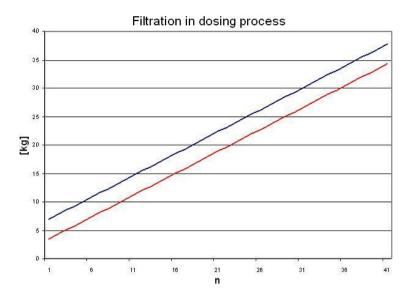
This filter eliminates short mechanical shocks.

Procedure:

Enter <P1 SCALE PARAMETERS> and then:

NO - filter disabled
YES - filter enabled

Return to weighing:

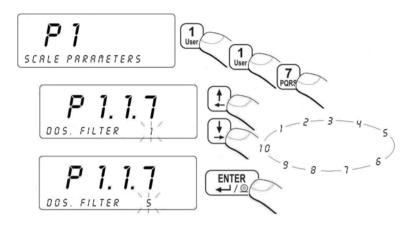

See 11.3.

13.3. Dosing filter setting

In PUE 41 terminals an special averaging filter for dosing process has been implemented. The result of this filtration, instead of traditional filters for static weighing, is compared with dosing setpoints. The filter parameter is the number of samples from the A/D converter (1 to 10). When the filter is set to 1 every reading from the A/D converter is compared with the dosing setpoints, which does not introduce any delay. If the filter parameter is set to n>1, the filtering result will be calculated as an arithmetic average from the last n measurements.

$$M = \sum_{i=1}^n X_i^{}$$
 ,where M is a filtering result from samples X_1 to $X_n^{}$.

As dosing is a kind of dynamic state, which results in continuous changes in measurements, the averaged number of samples in the filter have an effect on the result. An example situation is illustrated below:


The upper blue line represents results for n=1 samples in the filter buffer (averaging is off). The lower red line represents the same process when the filter is set to n=10. The difference depends on the dynamics (dosing rate) of changes either. The theory shows that the best filter parameter is n=1 because the setpoints can be compared with the current dosed mass. But in practice, there is a noise from different vibration sources registered and sometimes external forces connected with kinetic and potential energy of the poured material. It causes that the filter setting should be matched experimentally.

Caution:

- 1. The subsequent readouts of the measured value from the A/D converter is performed every 100 ms.
- 2. This filter operates only in dosing procedures.

Procedure:

 Enter <P1 SCALE PARAMETERS > according to 11.2. of the manual:

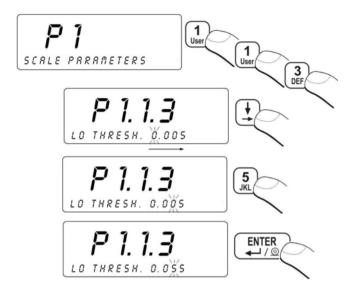
Return to weighing:

See 11.3.

13.4. Minimal mass parameter

Parameter **PROG LO** is related to following functions:

- automatic tare.
- automatic operation,
- weighing animals.


The next automatic tarring can be performed after the indication reaches the gross value below **LO THRESH**.

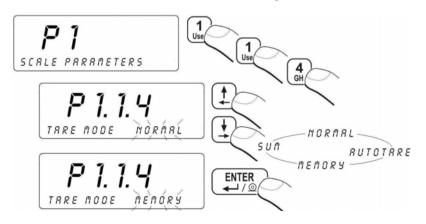
For automatic weighing the next weighings can be performed after the indication reaches the net value below **LO THRESH**.

The procedure of weighing animals will start after the gross animal mass is greater than **LO THRESH**.

Procedure:

• Enter <P1 SCALE PARAMETERS> according to 11.2. and then:

Return to weighing:


See 11.3.

13.5. Tare function

This parameter allows to set appropriate parameters for tarring.

Procedure:

• Enter <P1 SCALE PARAMETERS> according to 11.2. and then:

AUTO - disable automatic tare (the mode is remembered after

restart);

NORMAL - tarring by pressing (**T*);

MEMORY - tare memory mode - the last tare value is being kept in

a non-volatile memory, Net pictogram is displayed.

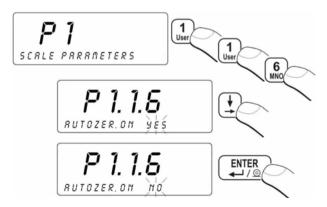
SUM - sum of tares – summing up a product tare value with

a tare from the database of tare values or with an

inscribed one.

Return to weighing:

See 11.3.


13.6. Autozero

The autozero function has been implemented in order to assure precise indications. This function controls and corrects "0" indication. While the function is active it compares the results continuously with constant frequency. If two sequentional results differ less than the declared value of autozero range, so the scale will be automatically zeroed and the pictograms \longrightarrow and $\stackrel{\bullet}{\rightarrow}$ 0 $\stackrel{\leftarrow}{\leftarrow}$ will be displayed.

When AUTOZERO is disabled zero is not corrected automatically. However, in particular cases, this function can disrupt the measurement process e.g. slow pouring of liquid or powder on the weighing pan. In this case, it is advisable to disable the autozero function.

Procedure:

• Enter <P1 SCALE PARAMETERS> according to 11.2. and then:

NO - Autozero disabled YES - Autozero enabled

Return to weighing:

See 11.3.

14. PORTS PARAMETERS

It is possible to connect external devices (printer, computer) to the ports:

- RS 232 (1)
- RS 232 (2)
- RS 485
- Ethernet

Configuration can be done in: <P2 COM PORTS PARAMETERS>.

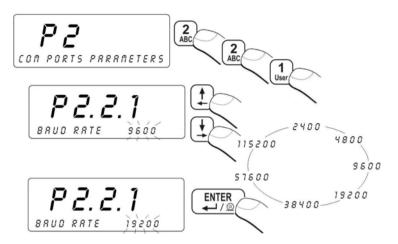
14.1. RS 232, RS 485 setting

For setting: RS 232, RS 485 use following parameters:

• Baud rate - 2400 - 115200 bit / s

Data bits - 7, 8
 Stop bit - 1, 1.5, 2

Parity - NONE, ODD, EVEN


Caution:

There is impossible to set data bits and stop bits for RS 232(2). They are internally set to 8 bits and 1 stop bit.

14.1.1. Baud rate of RS 232

Procedure:

 Enter <P2 COM PORTS PARAMETERS> according to 11.2. and then:


Return to weighing:

See 11.3.

14.1.2. Baud rate of RS 485

Procedure:

• Enter < P2 COM PORTS PARAMETERS > according to 11.2. and then:

Return to weighing:

See 11.3.

14.1.3. RS 232 parameters

Procedure:

- Enter <P2.2 RS232 (1)> and press ENTER ,
- Using scroll to <P2.2.2 DATA BITS> and press

- The selected value confirm with
- Using go to <P2.2.3 PARITY BIT> and press ENTER ...

- The selected value confirm with

The selected value confirm with ← NTER → NO.

Return to weighing:

See 11.3.

Caution:

Search chapter 32.2.2 of this manual to find details on connecting the scale with **EDYTOR WPW** via RS232.

14.1.4. Setting of RS 485 parameters

Procedure:

- Enter <P2.1 RS485> and press ENTER ,
- Using go to <P2.1.2 DATA BITS> and press

- Using go to <P2.1.3 PARITY BITS> and press

- The selected value confirm with ENTER
- Using go to <P2.1.4 STOP BITS> and press ENTER:

• The selected value confirm with

Return to weighing:

See 11.3.

14.2. ETHERNET setting

ETHERNET can be configured in <P2.4 ETHERNET>.

Inventory of default parameters:

No	NAME	VALUE	DESCRIPTION
P2.4.1	WORK MODE	SERVER, CLIENT	Ethernet connection as Server or Client. SERVER – scale waits for connection CLIENT – scale initiates the connection to a HOST.
P2.4.2	IP ADDRESS	192.168.0.2	Setting an IP address.
P2.4.3	SUBNET MASK	255.255.255.0	Setting a subnet mask for Ethernet connection.
P2.4.4	GATEWAY	192.168.0.1	Setting a gateway for Ethernet connection.
P2.4.5	LOCAL PORT	4001	Setting a local port for Ethernet connection. Only for devices that work as SERVER. Servers waits for connection on the specified port.
P2.4.6	HOST IP	192.168.0.3	Setting a host IP address (IP of a device to connect with). Applicable only for devices configured as CLIENTs.
P2.4.7	HOST PORT	2000	Setting a Host port (a port for connection with a computer). Applicable only for devices configured as CLIENTs.
P2.4.8	TIMEOUT	60	Time (in seconds) after which none- active Ethernet connection is being broken. Set to 0 to stop breaking the connection.

Caution:

- For appropriate setting of: <P2.4.2 IP ADDRESS>,</P2.4.3 SUBNET MSK>, <P2.4.4 GATEWAY> contact the supervisor of the net to connect with;
- 2. The way of connection via ETHERNET to the program **EDYTOR WPW** is described in chapter 32.2.3.
- 3. The scale does not allow the automatic fetch of net configuration from DHCP servers.

See 11.3.

15. EXTERNAL DEVICES

15.1. Cooperation with a computer

WPW scales can cooperate with computers of IBM PC class. In submenu **<P3.1 COMPUTER>** you can configure interfaces.

WPW scales can cooperate with the **EDYTOR WPW** program. The indicator window reflects the view of a typical indicator display with all necessary pictograms. The program allows to configure a scale easily, design printout patterns, supervise databases, set parameters, collect and save printouts etc.

Caution:

- Installation version of EDYTOR WPW is accessible on the Internet: www.radwag.com. Look up: Products / Measuring indicators / PUE C41H.
- 2. Check chapter 32.2 for details on cooperation with EDYTOR WPW.

15.1.1. Select the communication port scale-computer

The computer can be connected to:

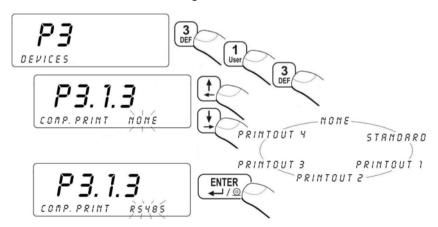
- RS 232 (1)
- RS 232 (2)
- RS 485
- Ethernet

Procedure:

• Enter <P3 DEVICES> according to 11.2. and then:

Caution:

Standard scales can communicate with computers only via RS232(1) or RS485.


Return to weighing:

See 11.3.

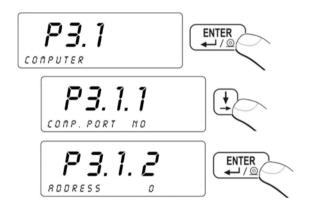
15.1.2. Type of printout scale – computer

Procedure:

• Enter <P3 DEVICES> according to 11.2. and then:

Caution:

The procedure of designing non-standard printouts is described in chapter 17.6 of this manual.


Return to weighing:

See 11.3.

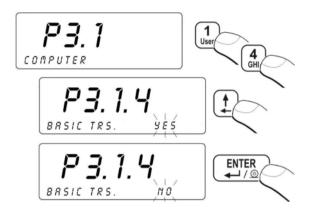
15.1.3. Address setting

Procedure:

• Enter < P3.1 COMPUTER > according to 11.2. and then:

Inscribe a value (0 to 254) and press

Return to weighing:


See 11.3.

15.1.4. Order operating of communication protocol

User in parameter <**P3.1.4 BASIC TRS.>** has possibility to set communication protocol designed to communicate between RADWAG scale and external device.

Procedure:

• Enter < P3.1 COMPUTER > according to 11.2. and then:

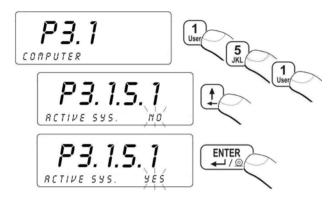
Return to weighing:

See 11.3.

15.1.5. Cooperation with "E2R System"

Scales can cooperate with computer software "E2R System" that is a modular system for complex production supervising by monitoring of weighings processes.

Caution:

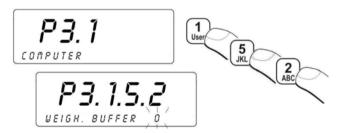

Enabling cooperation of the device with program "E2R System" can be done only by the manufacturer or authorized Service.

15.1.5.1. Enabling "E2R System"

In order to allow the cooperation with "E2R System" enable parameter <P3.1.5.1 ACTIVE SYS.>.

Procedure:

• Enter < **P3.1 COMPUTER** > according to 11.2. and then:


See 11.3.

15.1.5.2. Buffer for weighings

Users can declare the quantity of performed measurements to be saved in the internal buffer in the scale in case of operating **OFF-LINE** (no transmission to "**E2R SYSTEM**"). After reconnecting with "**E2R SYSTEM**" all measurements from the internal buffer will be sent to the database of the computer program.

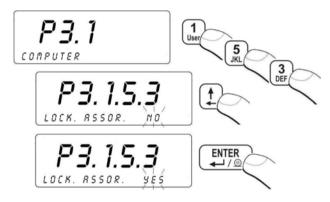
Procedure:

• Enter < P3.1 COMPUTER > according to 11.2. and then:

 Type on the scale keyboard the required buffer length and confirm by pressing button

Caution:

The buffer equal to **0** results in saving all weighings in the database in case of operating **OFF-LINE**.


See 11.3.

15.1.5.3. The lock of product change

Users can lock changing products by scale operators cooperating with **"E2R SYSTEM"**.

Procedure:

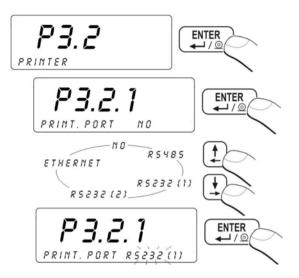
• Enter < P3.1 COMPUTER > according to 11.2. and then:

Return to weighing:

See 11.3.

15.2. Cooperation with printers

Press to send the current measurement together with the weighing unit to a printer.


15.2.1. Communication port scale - printer

Following ports can be used:

- RS 232 (1),
- RS 232 (2),
- RS 485,
- Ethernet.

Procedure:

Enter <P3.2 PRINTER> and then:

Return to weighing:

See 11.3.

15.3. Cooperation with a barcode scanner

The scale gives possibility to cooperate with barcode scanners. It is used for quick search of database of assortment.

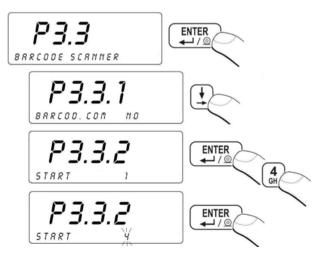
Caution:

In **<P2 COM PORTS PARAMETERS>** set the baud rate for the same as your barcode scanner requires (default 9600b/s). See details for cooperation with barcode scanners in chapter 32.1 of this manual.

15.3.1. Select a communication port for the scanner

Procedure:

• Enter <P3.3 BARCODE SCANNER> and then select a communication port with the barcode scanner:

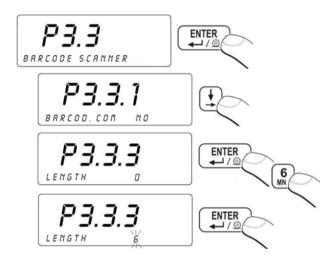


See 11.3.

15.3.2. Setting the START parameter

Procedure:

 Enter <P3.3 BARCODE SCANNER> and then set the START parameter – a character number in barcodes that is to be analysed during the assortment database search:



See 11.3.

15.3.3. Setting the LENGTH parameter

Procedure:

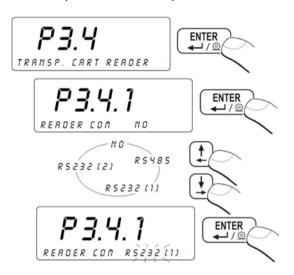
Enter <P3.3 BARCODE SCANNER> and then set the LENGTH
parameter – the number if character in barcodes (counting from
START) that is to be analysed during the assortment database
search:

Return to weighing:

See 11.3.

15.4. Cooperation with a transponder card reader

Operators can be logged in after powering up the device or previous logging out by:


- Inscribing a password using the scale keyboard,
- Using transponder cards to log in.

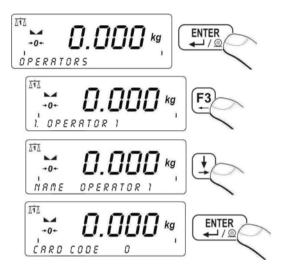
Caution:

In parameters **<P2 COM PORTS PARAMETERS>** set the baud rate for the one that requires the barcode scanner (default 9600b/s).

15.4.1. Selecting of communication port

In parameters <P3.4 TRANSP. CARD READER.> and then select a communication port with the transponder card reader:

Return to weighing See 11.3.


15.4.2. Procedure of ascribing card numbers to operators

In order to log in using a transponder card you need to have it previously ascribed to a specific operator.

Procedure:

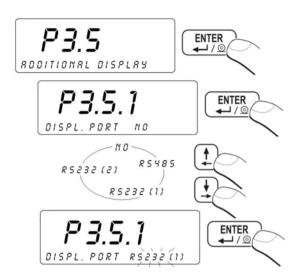
- Connect a transponder card reader to RS232/RS485 on the back wall of the terminal,
- Select a communication port (see 15.4.1),

- In parameters <P2 COM PORTS PARAMETERS> set the baud rate (default 9600b/s).
- Enter the database of operators and then find and edit the required operator. Find <CARD CODE> field:

- Approaching a card to the reader results in displaying the card number in the <CARD CODE> field,
- Press ^{ENTER}

 → /② to confirm,
- Return to weighing chapter 11.3.

15.5. Cooperation with an additional display

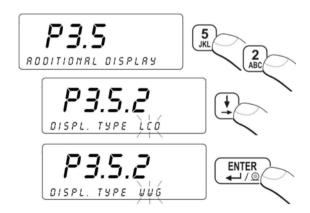

15.5.1. Selecting a communication port

Additional displays can be connected to:

- RS 232 (1)
- RS 232 (2)
- RS 485

Procedure:

Enter < P3.5 ADDITIONAL DISPLAY > according to 11.2. and then:



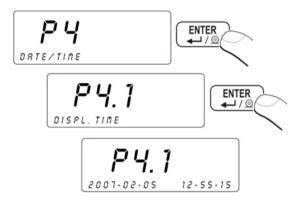
See 11.3.

15.5.2. Selecting an additional display type

Procedure:

• Enter < P3.5 ADDITIONAL DISPLAY > according to 11.2. and then:

Return to weighing:

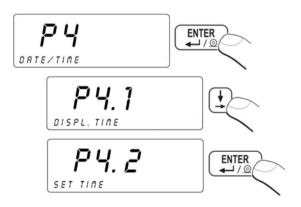

See 11.3.

16. DATE / TIME SETTING

Enter <P4 DATE / TIME> to set these parameters.

16.1. Time view

Procedure:


Return to weighing:

See 11.3.

16.2. Time setting

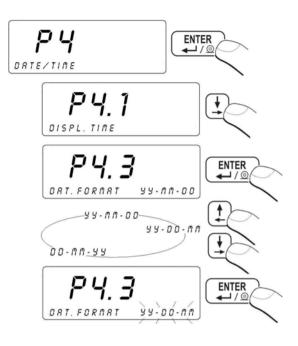
Procedure

• Enter the **DATE / TIME>** and then:

After pressing you will see:

- Enter an appropriate value and confirm it with
- You will have to enter the following variables in sequence:
 - MONTH
 - DAY
 - HOUR
 - MINUTE
- After confirming the last value with you will see the current date and time:

Return to weighing:


See 11.3.

16.3. Date format

Date can be displayed in different format.

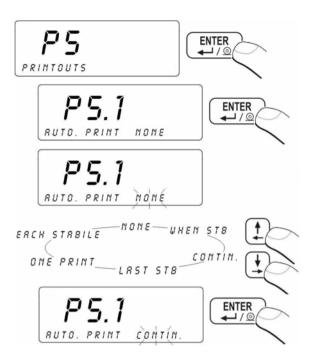
Procedure:

Enter <P4 DATA / TIME> and proceed as follows:

YY - MM - DD - year - month - day YY - DD - MM - year - day - month DD - MM - YY - day - month - year

Return to weighing:

See 11.3.


17. PRINTOUTS

17.1. Printout type

Setting the <P5.1 AUTO. PRINT> parameter can set a type of printout:

Procedure:

• Enter **<P5 PRINTOUTS>** according to 11.2. and then:

NO

WHEN STB CONTIN.

- manual printout

- automatic printout after stabilising

- continuous printouts

LAST STB - printing the last stable result after taking of a load, before reaching the LO-. value

ONE PRINT

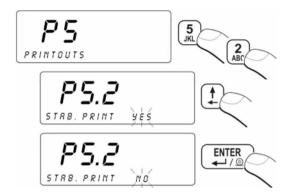
EACH STABILE

- Single print over **-LO-**

- Automatic printout of each stable measurement over the **-LO-**

Return to weighing:

See 11.3.


17.2. Printout of stable / unstable data

Enter <P5.2 STAB. PRINT>, to set the printout as:

- Stable data,
- Immediate data.

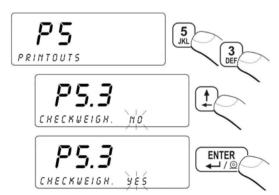
Procedure:

• Enter <P5 PRINTOUTS> according to 11.2. and then:

Return to weighing:

See 11.3.

Notice:

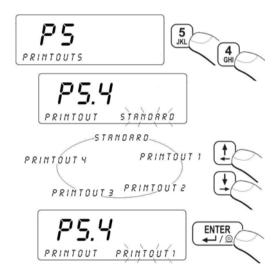

In case of verified scales <P5.2 STAB. PRINT> is not accessible for users.

17.3. Checkweighing mode

In this mode printout is possible only when the result is between **Min**, **Max** thresholds.

Procedure:

• Enter <P5 PRINTOUTS> according to 11.2. and then:

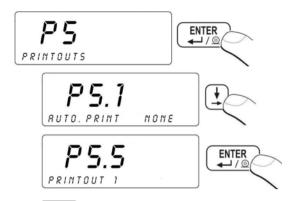

See 11.3.

17.4. Non-standard printouts

Users have possibility to design non-standard printouts in **<P5.4 PRINTOUT>**.

Procedure:

• Enter <P5 PRINTOUTS> according to 11.2. and then:


Return to weighing:

See 11.3.

17.5. Designing non-standard printouts

To create a non-standard printout:

• Enter <P5 PRINTOUTS> according to 11.2. and then:

After pressing you will see a cursor. Software is ready to accept your data.

Non-standard printout can comprise:

- Constant texts.
- Variables from different work modes (mass, date, thresholds etc.),
- Non-standard printout design can include max. 320 characters,
- Non-standard printout sent to a printer can include max. 640 characters.
- Up to 4 non-standard printouts can be designed.

Caution:

- 1. During designing non-standard printouts all special characters like CRLF, tabulators etc. have to be added.
- 2. Examples of designing non-standard printouts can be found in chapter 32.4.

17.6. Texts in non-standard printouts

17.6.1. Code format

% XXX - sending to a printer a variable XXX value

* XXX YY - sending to a printer YY (declared) characters of XXX variable value justified to the left.

Caution:

Every non-standard printout should be terminated with 10 character

17.6.2. Variables appearing in all modes

CODE	DESCRIPTION
%000	Mass in a basic unit of the active platform
%001	Mass in a current unit of the active platform
%002	Date
%003	Time
%004	Date and time
%005	Calibration unit
%006	Current unit
%007	Min threshold (for checkweighing)
%008	Max threshold (for checkweighing)
%009	Min threshold (for checkweighing) 7 digits
%010	Max threshold (for checkweighing) 7 digits
%011	Net mass in the calibration unit
%012	Gross mass in the calibration unit
%013	Display result in a present unit
%014	Tare in calibration unit
%015	Statistics – ordinal number
%016	Statistics – sum in the calibration unit
%017	Statistics – average value in the calibration unit
%018	Statistics – minimal value in the calibration unit
%019	Statistics – maximal value in the calibration unit
%020	Statistics – unit
%021	Single pcs mass
%022	Standard (nominal) mass in Checkweighing
%023	Platform number
%024	Operator name
%025	Operator code
%038	Article name (assortment)
%039	Article code (assortment)
%040	Article EAN code (assortment)
%042	Minimal mass of article (assortment)
%043	Maximal mass of article (assortment)
%044	Article tare value (assortment)
%056	Net mass (lb)
%058	Number of digits after the point (calibration unit)
%059	Number of digits after the point (current unit)
%060	Net mass in EAN 13 (6-character code)
%061	Net mass in EAN 13 (7-character code)
%064	Net mass in EAN 128

%067	Net mass (lb) in EAN 128
%068	Gross mass EAN 128
%070	Date in EAN 128
%126	Reference quantity for counting pieces
%127	Difference of tare values (a product tare value subtracted from present tare value)
%128	Batch number (6 characters)
%131	Dosing net mass in calibration unit
%132	Present number of records in the weighing database
%134	Batch number (10 characters)
%136	Present correction for dosing in calibration unit
%137	Present corrected MAX threshold for dosing
%138	Loss in weight in per cents
%139	Net mass in calibration unit decreased by loss in weight
%140	Net mass in present unit decreased by loss in weight

17.6.3. Variables for printing out weighings from the database

%073	Weighing net mass
%075	Weight unit
%076	Weighing date
%077	Weighing time
%078	Operator code
%079	Assortment code
%083	Number of series
%084	Platform number
%135	Batch number

This program includes a standard pattern of printouts from the database (pattern name: ***WG01***), with following variables:

- Net mass of weighing,
- Date.
- Time.

Caution:

Remember that the name of a new printout design should have the following pattern: ***WGXX***, where: **XX** – subsequent number of printout.

17.6.4. Variables for printouts of reports from weighings

%086	Weighing status (threshold for weighing - MIN, OK or MAX)
%087	Sum of weighings
%088	Weight unit
%089	Number of weighings
%090	Start date
%091	End date
%092	Operator code
%093	Assortment code
%095	Recipe code
%096	Batch number printout
%097	Series number
%098	Type of weighings (%, pcs, kg etc.)
%099	Platform number
%129*	Present record name for generating a complex report
%130*	Marking of the space for weighings in a complex report (the variable needs to be situated at the beginning and in the end of the requested printing space)

^{*) –} Variables for complex report pattern (i.e. with heading and footer). An example of complex report is described in ch.32.5 of this manual.

The program includes 4 patterns of reports from weighings. ***RP02*** is the English equivalent of ***RP01*** and ***RP04*** is an English equivalent of ***RP03***:

Name	Comprised variables
 ₩RP01₩	Sum of weighings Number of weighings Start date End date
#RP03#	Operator code Assortment code Contractor code Sum of weighings Number of weighings Start date End date

Caution:

- Remember that the name of a new printout design should have the following pattern: **RPXX**, where: XX – subsequent number of printout.
- 2. FORMULATION software do not include a database of contractors. That is why the printout ***RP03*** substitutes "Contractor code" with dashes < - >.

17.6.5. Variables for printouts of reports from recipes

%108	Report date
%109	Report time
%110	Operator code
%111	Operator name
%112	Recipe code
%113	Recipe name
%114	Number of ingredients in the recipe
%115	Status of the recipe
%116	Total mass of recipe
%117	Calibration unit of platform 1
%118	Ingredient mass
%119	Ingredient nominal mass
%120	Deviation of ingredient mass (nominal – real mass)
%121	Ingredient unit
%122	Ingredient code (from the assortment database)
%123	Ingredient name (from the assortment database)
%124	Number of weighing platform
%125	Setting present ingredient for the report (variables concerning ingredients will print an adequate data)
%133	Number of series for the ingredient

This program includes a default report pattern (name: ***RCP1***), that includes:

- Date and time of report,
- Operator name,
- Recipe name,
- Recipe code,

- Recipe mass,
- Recipe status,
- Ingredient name,
- Ingredient code,
- Ingredient mass,
- Nominal mass of ingredient,
- deviation of ingredient mass.

Notice:

Remember that the name of a new printout design from recipes should have the following pattern: ***RCPX***, where: **X** – subsequent number of the designed printout.

17.6.6. Special characters that can be used in non-standard printouts

\\	Single character - "\"
\c	CRLF
\r	CR
\n	LF
\t	Tabulator
\0	End of printout

Every text in a non-standard printout may include up to 320 characters (letters, digits, special characters, spaces).

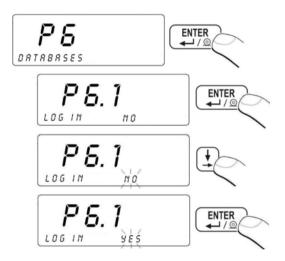
Example:

"RADWAG"	
Date:	
Time:	
Mass:	
Signat	ure:

The inscribed data for:

"RADWAG"\C\TDATE:%002\C\TTIME:%003\C\T MASS:%000\C\C\T\TSIGNATURE:......\C\0

18. DATABASES

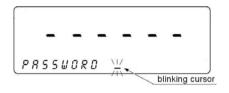

18.1. Logging in

In case of activating of logging procedure (submenu <**P6.1 LOG IN>**), an operator after switching on has to perform a jogging procedure which consists in inscribing a password.

Operators can also use a transponder cards for this procedure provided the terminal is equipped in a transponder card reader. (see 15.4).

Procedure:

• Enter <P6 DATABASES> according to 11.2. and then:



Return to weighing:

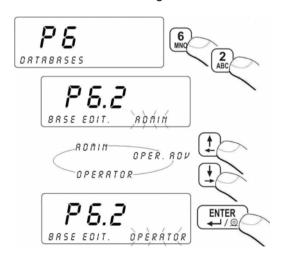
See 11.3.

Users can log in even if this procedure is disabled at the start:

- Turn on the device
- Press during a display test,
- Program will show the following window:

Notice:

In case there are no data in the operators' database press to skip the logging procedure and add at least one operator with the highest level access. If no ADMINISTRATORS are defined there will be no access to some functions designated only for administrators.


18.2. Access level

18.2.1. Access level to edition of databases

Any administrator is able to set one of three levels of edition of databases: administrator, advanced operator or operator.

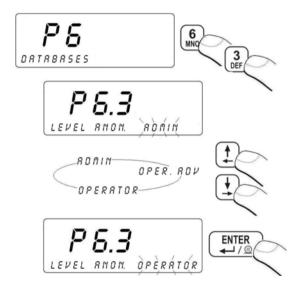
Procedure:

• Enter <P6 DATABASES> according to 11.2. and then:

Return to weighing:

See 11.3.

Notice:


This setting is valid although the standard logging is disabled.

18.2.2. Access level for disabled logging

The scale program gives possibility to set an access level in case of disabling logging procedure.

Procedure:

• Enter <P6 DATABASES> according to 11.2. and then:

OPERATOR

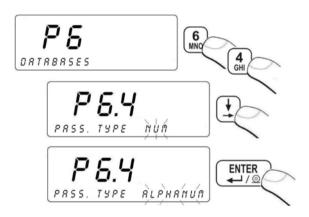
Can perform weighings, edit P1, P4, P9
 parameters; cannot edit databases and erase
 statistics; cannot change weighing thresholds
 Min, Max, cannot adjust the standard mass
 in modes "counting pieces" and "deviations".

ADVANCED OP.

 Can perform weighings and edit parameters except P8, P10 and P6.1, P6.2, P6.3; can edit databases except operators.

ADMIN

 Have a full access to parameters and databases, can perform user calibration (in non-verified scales).


See 11.3.

18.3. Password type

It is possible to set the password type to inscribe.

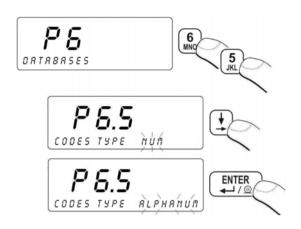
Procedure:

Enter <P6 DATABASE> according to 11.2. and then:

NUM - only digits 0 to 9

ALPHANUM - alphanumeric password

Return to weighing:


See 11.3.

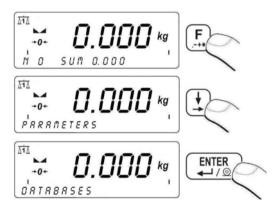
18.4. Type of codes

There is possible to select a type of codes. You can set this in database settings.

Procedure:

• Enter <P6 DATABASES> according to 11.2. and then:

NUM - only digits 0 to 9


ALPHANUM - alphanumeric password

Return to weighing:

See 11.3.

18.5. Access to edition of databases

Procedure:

Return to weighing:

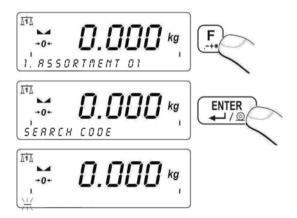
See 11.3.

Caution:

Users can access different things in the menu according to their Access levels. It also concerns an access to databases.

18.6. Quick searching in databases

Users can search databases using different criteria:


- Code.
- Name,
- Record number.

This procedure is applicable for operators, assortment and recipes.

18.6.1. Quick code search

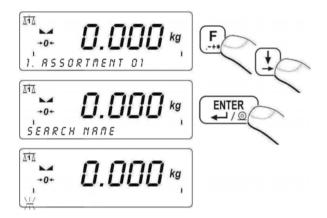
Procedure:

• While in any work mode press (select / view products in the assortment database) and then:

- Inscribe the product code you search and then press
- The program displays the product you search in the bottom line.

Caution:

If the search result is not successful the **<NO RECORD>** message in the bottom line is displayed for 1 second and then software returns to displaying the current record.


Return to weighing:

See 11.3.

18.6.2. Quick name search

Procedure:

While in any work mode press (select / view products in the assortment database) and then:

- Inscribe the product name you search and then press
- The program displays the record you search in the bottom line.

Caution:

You can inscribe a part of the product name to start searching. The program will display the first string it encounters with the same beginning as the inscribed one. If the search result is not successful the **<NO RECORD>** message in the bottom line is displayed for 1 second and then software returns to displaying the current record.

18.6.3. Quick number search

Procedure:

- While in any work mode press (select / view products in the assortment database),
- Scale program displays the record number one in the bottom line:

- Using numeric keys to enter a required record number,
- Scale program displays the record in the bottom line:

Return to weighing:

See 11.3.

18.7. User database

The database of operators can hold up to 100 records in standard setting of databases.

Procedure:

Enter databases according to 18.5. and then:

When the database is empty you will see:

- Press f1 to add an operator,
- In the bottom line you will see the first line for inscribing data.
- You can enter the edition end confirm any data by pressing
 You can select fields using

Fields in an operator record:

NAME	Operator name (max. 40 characters)	
CODE	Operator code (max. 6 characters)	
PASSWORD	Password for logging (max. 8 characters)	
CARD CODE	Transponder card code (max. 15 digits)	
AUTHORIS.	Access level	

- After defining all fields in a record of operator press
 (ESC)
- Then you will see:

- Press enter if you want to save,
- You will see an operator name and a position in the database:

- To delete an operator press E2,
- To edit a defined operator press F3,
- To delete all records press F4.

See 11.3.

18.8. Assortment database

The assortment database can comprise up to 3000 records.

Procedure:

• Enter databases according to 18.5 of this manual:

In case the database is empty you will see:

- Press to add a record,
- You will see the first empty record in editing mode.
- Entering edition and confirming changes can be made by pressing ENTER. Select fields to be changed using keys.

Fields in the assortment database:

NAME	Product name (max. 40 characters)
CODE	Product code (max. 7 characters)
DOSE. OUTPUT NO.	Declaration of output number for precise dosing of a product
FAST DOSE. OUTPUT NO.	Declaration of output number for fast dosing of a product

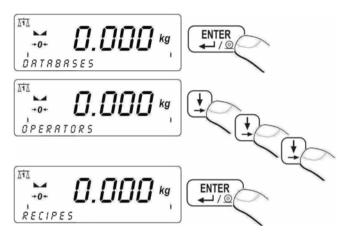
- After defining all fields press

 [ESC]
- You will see the following inscription:

- Press to save changes,
- You will see the products name you have edited:

- To erase the selected record press F2,
- To edit the selected record press
- To clear the database press F4.

Return to weighing:


See 11.3.

18.9. Database of recipes

The database of recipes can hold up to 500 records.

Defining records:

• Enter the database of recipes according to 18.5 of this manual:

In case the database is empty you will see:

- To add a new recipe press F1,
- In the bottom line you will see the first field.
- Use key to enter a parameter and confirm a parameter value.

 Select an appropriate field using

Fields in recipe records:

NAME	Recipe name (max 40 characters)	
CODE	Recipe code (max 7 characters)	
PLATF. 1 TARE Tare value for platform 1 prescribed to recipe		

PLATF. 2 TARE	Tare value for platform 2 prescribed to recipe	
INGRED. NUMBER	Number of ingredients in the recipe	
INGRED. 1 MASS	Nominal mass of ingredient 1	
INGR. 1 MASS MIN.	Minima mass of ingredient 1 or threshold 1 in dosing	
INGR. 1 MASS MAX.	Maximal mass of ingredient 1 or threshold 2 in dosing	
INGR. 1 PLATF.	Platform number prescribed to the ingredient 1	
INGR. 1 CODE	Ingredient 1 code (from the assortment database)	
INGRED. 2 MASS	Nominal mass of ingredient 2	
Etc.	Menu length is determined by the number of ingredients	

- After defining all the fields press

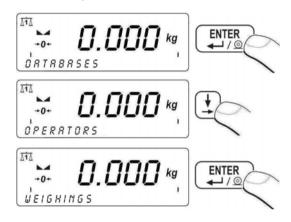
 [ESC]
- In the lower line you can see:

- Press to save changes,
- In the lower line of the display you will see the name of the inscribed recipe and the subsequent position number in the database:

- To delete a selected recipe in the database press F2
- To edit a defined recipe press

 To edit a defined recipe pr
- To delete all the recipes press

 [LEAP]


Return to weighing:

18.10. Weighings database

Every result sent from the scale to a printer is also saved in the database of weighings. There is possible to save up to 30 000 records in database in standard setting.

Procedure:

• Enter the database according to 18.5 and then:

• When the database is empty you will see:

 In case when the database is not empty, you will see the first record (date, mass, unit):

To delete the selected record press F2,

- To delete all records press F4.
- To print the selected record press

Notice:

- 1. Single record can be deleted only when first in the database (the oldest record).
- 2. The printout pattern and variables for designing non-standard printouts are described in ch. 17.6 of his manual.

Return to weighing:

See 11.3.

18.11. Database of tare values

It is possible to hold up to 100 tare values (for every platform).

Procedure:

- Press twice in any work mode,
- In case when there is no record you will see the following window:

- To enter a tare value F3,
- Press one more time to return to the weighing mode. You will see the entered value with "—".
- To delete a selected tare press F2,
- To edit a selected tare press F3,
- To delete all tare press F4,

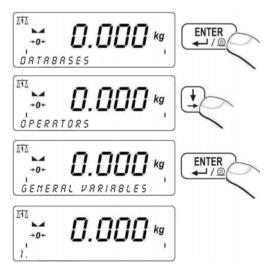
You can browse the database using or by inscribing a position number using to year.

Caution:

If users confirm a tare value greater than the maximal value (full scale) you will see the following inscription: **<TOO HIGH VALUE>**.

Return to weighing:

See 11.3.


18.12. General purpose variables

You can inscribe any text to be memorized for printouts. You can view or edit them from the level of databases in the menu or using a quick access method by pressing from any work mode (apart from dosing).

18.12.1. Editing general purpose variables

Procedure:

• Enter databases according to 18.5 and then:

To add	or modify a record (inscribing only digits 0 to 9) press (F4),
 To clear 	a field press when you are in,
 Using a it by pre 	ppropriate keys inscribe a variable and confirm ssing
You can	browse the variables using or by inscribing
a variab	le position number to get a quick access.
Return to we	eighing: e 11.3.
18.12.2. Ge	neral purpose variables in printouts
records. Eac	e of general purpose variables can comprise up to 100 h record can hold up to 40 characters. Each variable ed a code number formatted as% XXX or XXX YY:
% XXX -	inserting to the printer buffer a dedicated variable, where:
	XXX – is between 801 to 900, which is equivalent to subsequent records in the database (e.g. code 802 is equivalent to the 2nd position in the database).
	inserting to the printer buffer a dedicated variable, where YY is a declared quantity of characters from a variable XXX .
Example:	
"RADWAG" Date: Time: Mass:	
sig	nature:

• To add or modify a record (inscribing characters like in mobile

phones) press F3,

Where: < "RADWAG"> is a universal variable No 3. After entering non-standard printouts (see 17.5) we design a printout:

%803\C\TDATE:%002\C\TTIME:%003\C\TM ASS:%000\C\C\T\TSIGNATURE:..........\C\0

19. REPORTS

19.1. Reports from weighings

Users can print reports from weighings.

Reports can be filtered according to:

- start date.
- end date,
- operator code,
- assortment code,
- recipe code,
- type of weighing,
- weighing platform number,
- number of series,
- batch number.

19.1.1. Editing reports

While in any work mode press and then:

Return to weighing:

19.1.2. Printouts of reports

After entering (see ch. 19.1.1) you will see the following display:

- To edit variables press
- Confirm changes by pressing ENTER
- To filter according to the selected variable press and you will see the following window:

Press to go to the next variable,

Caution:

Code filter of assortment or operator can have following values:

- ALL (key complex report comprising weighings for each product or operator separately,
- NON-ZERO (key) complex report comprising weighings for each product or operator separately.

An example of complex report pattern is described in ch. 32.5 of this manual.

After editing all variables go to the next item <PRINT REPORT>
by pressing

Press (A) you will see the window:

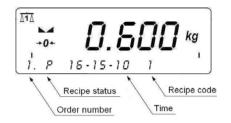
- Using select one of four patterns (details in ch.17.6),
- Press to print out the report.

Return to weighing:

See 11.3.

Caution:

If a user disables filtering according all the variables, the program will print out a report from all the weighings.


19.2. Reports from recipes

Printout procedure:

• While in any mode of weighing press and then:

After pressing ENTER you will see:

- Using select a report (report description in ch. 17.6.4 of this manual),
- For viewing data press (report description in ch. 17.6.4 of this manual),
- Press you will see a printout on the connected printer.

Return to weighing:

See 11.3.

20. CONFIGURATION OF EXTERNAL INPUTS / OUTPUTS

20.1. Configuration of external buttons

Following external buttons can be connected:

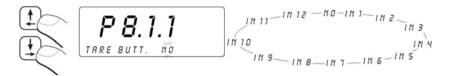
TARE BUTT Tare button
PRINT BUTT Print button
ZERO BUTT Zero button
START BUTT Start button,

Start weighing animals button

STOP BUTT

Button for breaking dosing process,
Button for breaking weighing animals

EXT. START Input signal allowing to START dosing **TERM. BUTT.** Terminating of dosing process


CHUTE PERM. Perdition input signal for chute

Perdition input signal for ingredients

Procedure:

To declare a number of input ascribed to the button enter
 P8.1 EXTERNAL BUTTONS> and then,

- Press you will see <P8.1.1 TARE B.>,
- Press ← Pre

- Confirm your selection with
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
- Using go to the next parameter.

Caution:

You can ascribe all your buttons accordingly. Remember that the standard solution has only 3 inputs.

Return to weighing:

See 11.3.

20.2. Configuration of outputs

Users can configure outputs according to their needs.

You can declare outputs:

MIN Mass below the Min threshold

OK Mass between Min and Max threshold

MAX Mass over the Max threshold

STABLE Stable result over the LO threshold

P1 CHUTE Chute of platform 1
P2 CHUTE Chute of platform 2

DOSE. SIGNAL. Signalling of dosing process

Procedure:

- To declare an output number connected with the function, enter <P8.2 OUTPUT CONF.> and then:
- Press ^{ENTER}
 — you will see <P8.2.1 MIN>,

Press ENTER → /② :

- Confirm the selected value with
- Using go to the next function.

Notice:

You can ascribe all functions to outputs accordingly. Remember that the standard solution has only 3 reed relay outputs.

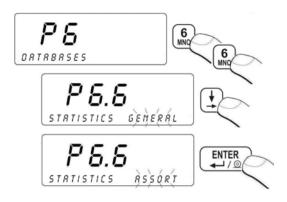
Return to weighing:

See 11.3.

21. STATISTICS

21.1. Updating statistics

All statistics are updated in real time after every subsequent measurement after putting a load on the pan, reaching equilibrium, and pressing ENTER .


Number of weighings and sum are show in the lower line of the display.

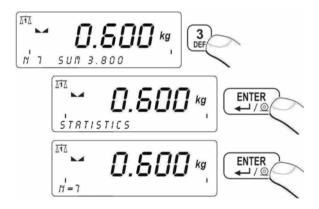
Statistics can be calculated globally (does not depend on the selected product) or separately for every product from the assortment database. It can be set in parameters **<P6.6 STATISTICS>**.

Procedure:

Enter < P6 DATABASES > according to 11.2. and then:

GENERAL - global statistics,

ASSORT - statistics for every product.


Return to weighing:

See 11.3.

21.2. Printouts of statistics

Users can print out statistics in any work mode.

Procedure:

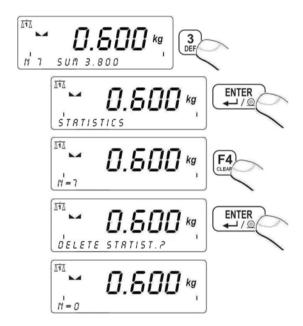
Using users can view the current statistics: **SUM** – total mass of all details, **AVG** – every mass of all details, **MIN** – minimal mass, **MAX** - maximal mass.

Printout example:

N = 7 S U M = 3.800 kg A V G = 0.543 kg M I N = 0.200 kg M A X = 1.000 kg - number of weighing

- total mass

- average mass of all loads


- minimal mass

maximal mass

21.3. Zeroing statistics

Users can delete statistics to start a new series of measurements.

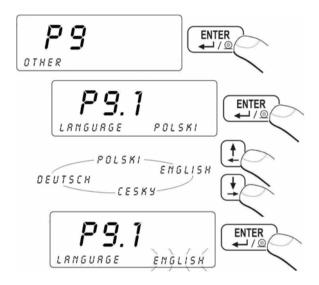
Procedure:

Return to weighing:

See 11.3.

Caution:

- 1. When a user changes a work mode all statistics are automatically deleted.
- 2. Statistic data are common from all platforms connected (no separate calculations).


22. OTHER PARAMETERS

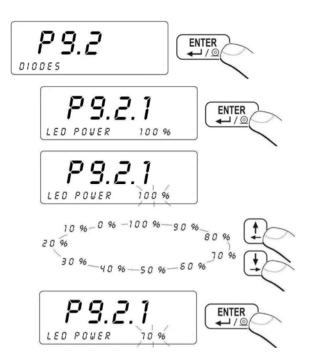
Users can set parameters that influence the weighings procedure. There are included in **<P9 OTHER>** e.g. language, backlight, BEEP sound.

22.1. Language setting

Procedure:

• Enter <P9 OTHER> according to 11.2. and then:

Return to weighing:


See 11.3.

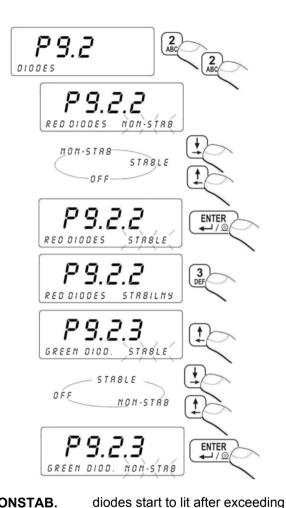
22.2. LED power setting

According to the requirements (e.g. intensity of external light) it is possible to change the light flux from LEDs in the scale of 0% to 100%.

Procedure:

• Enter <P9.2 DIODES> according to 11.2. and then:

Return to weighing:


See 11.3.

22.3. Work modes for LEDs

In **<P9.2 DIODES>** users can chose a work mode for LEDs.

Procedure:

• Enter <P9.2 DIODES> according to 11.2. and then:

RED LEDS NONSTAB.

RED LEDS STABLE

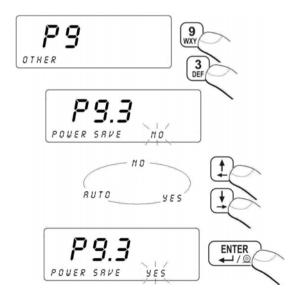
RED LEDS OFF
GREEN LEDS NONSTAB.
GREEN LEDS STABLE

GREEN LEDS OFF

Return to weighing: See 11.3 the LO threshold (see 13.3), diodes start to lit after exceeding the LO and reaching equilibrium, diodes not work, diodes start to lit after exceeding the

diodes start to lit after exceeding the LO, diodes start to lit after exceeding the LO and reaching equilibrium, diodes not work

22.4. Automatic power down


Changes can be made in **<P9.3 POWER SAVE>**. When the **POWER SAVE** function is enabled the device switches off after 5 min. Provided no changes on the pan appeared (no changes on the display).

Function cotting	Operation	
Function setting	Mains	Accumulator
POWER SAVE = NO	Disabled	Disabled
POWER SAVE = YES	Enabled	Enabled
POWER SAVE = AUTO *	Disabled	Enabled

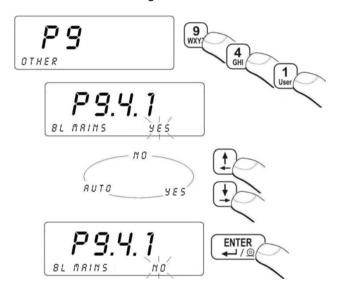
^{*} power save mode for the internal power supply.

Procedure:

• Enter <P9 OTHER> according to 11.2. and then:

Return to weighing:

22.5. Backlight


According to the requirements (e.g. intensity of external light) it is possible to:

- Switch on/off or set the backlight operation to AUTO when supplied from mains,
- Change the backlight intensity in the scale of 0% to 100% when supplied from an accumulator (lower backlight intensity increases the operation time when supplied from the accumulator).

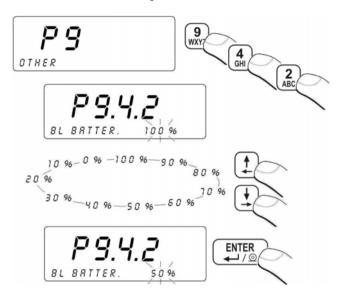
22.5.1. Backlight - power supply from mains

Procedure:

Enter <P9 OTHER> according to 11.2. and then:

NO - backlight switched off

YES - backlight switched on


AUTO - backlight switched off automatically

Return to weighing:

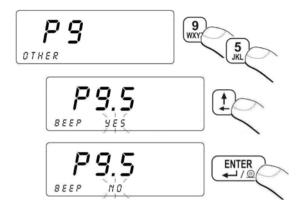
22.5.2. Backlight - power supply from the accumulator

Procedure:

• Enter <P9 OTHER> according to 11.2. and then:

Return to weighing:

See 11.3.


Notice:

Backlight operation shortens time between subsequent recharges of the accumulator.

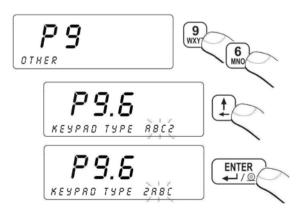
22.6. "Beep" sound – key-press reaction

Procedure:

• Enter the <P9 OTHER> according to 11.2. and then:

NO - no "beep" after pressing keys
YES - "beep" after pressing keys

Return to weighing:


See 11.3.

22.7. Keypad modes

The program allows to chose between alphanumeric keypad modes for inscribing texts.

Procedure:

• Enter <P9 OTHERS> according to 11.2. and then:

2ABC - Digits come first after pressing a key

ABC2 - Letters come first after pressing a key

Return to weighing:

See 11.3.

22.8. Software version view

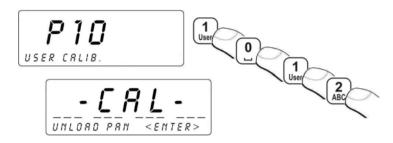
Users <P9.7 SOFT. VER.> can view a software version number.

Procedure:

• Enter <P9 OTHER> according to 11.2. and then:

Return to weighing:

See 11.3.


23. SCALE CALIBRATION

An option only for non-verified scale

Scales require to recalculate internal divisions to more suitable ones (e.g. g, kg etc.). In order to do this they require a calibration factor. It is adjusted during the calibration procedure using a mass standard. Calibration should be made when weighing a standard mass shows a different mass value.

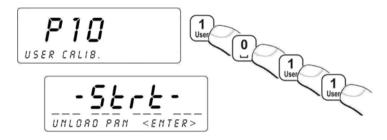
23.1. Calibration procedure

• Enter <P10 USER CALIB.> according to 11.2. and then:

- Unload the pan,
- Press During adjusting a start mass you will see:
 ADJ. START MASS, in the bottom line,
- After completing this procedure you will see the following window:

- Place the required mass on the platform 1 then press
- During the calibration process you will see: **ADJ. CALIB. FACTOR**, in the bottom line..
- After the procedure is completed you will see in: UNLOAD THE PAN
 in the bottom line,
- · After taking off the calibration weight :

Return to weighing, saving parameters.


Return to weighing:

23.2. Start mass adjustment

It is possible to adjust only a start mass, it helps to correct the start zero when the span does not change.

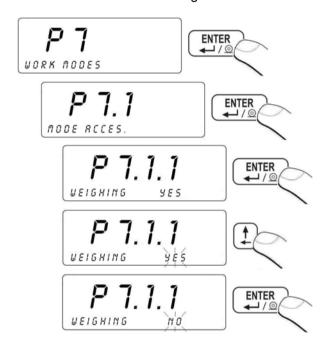
Procedure:

• Enter <P10 USER CALIB.> according to 11.2. and then:

- Unload the scale,
- Press During adjusting a start mass you will see:
 ADJ. START MASS, in the bottom line,
- After completing this procedure the scale will return to the following window:

Return to weighing, saving parameters.

Return to weighing:


24. WORK MODES

24.1. Accessibility of work modes

In **<P7.1 ACCESSIBILITY>** users can declare work modes that are accessible after pressing .

Procedure:

• Enter <P7 WORK MODES> according to 11.2. and then:

NO - mode denied YES - mode accessible

Return to weighing:

See 11.3.

Caution:

This way you can disable/enable all accessible work modes.

24.2. Programmable keys

Procedure:

• Enter <P7 WORK MODES> and then:

- Using and select a key to ascribe (MNO, PORS, TUV, WXYZ or O).
- Enter the parameter pressing
 Enter the parameter pressing
 The parameter
- Using and select the required function and press enter

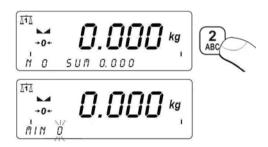
Return to weighing:

See 11.3.

The inventory of functions accessible for ascribing to keys:

Name	Description
DIGIT. BATCH NO	Inscribing of 6-digit batch number
ALPHA. BATCH NO	Inscribing of 6-character batch number
PRINTOUT 1	Printing non-standard printout No 1
PRINTOUT 2	Printing non-standard printout No 2
PRINTOUT 3	Printing non-standard printout No 3
PRINTOUT 4	Printing non-standard printout No 4
EDIT. PRINTOUT 1	Edit non-standard printout No 1
EDIT. PRINTOUT 2	Edit non-standard printout No 2

EDIT. PRINTOUT 3	Edit non-standard printout No 3	
EDIT. PRINTOUT 4	Edit non-standard printout No 4	
ASSORTMENT CODE	Quick search of the assortment database using a product code	
EAN ASSORT. CODE *	Quick search of the assortment database using a product EAN code	
STAT. PRINTOUT	Printing statistics	
STAT. PRN. DELETE	Printing statistics with deleting counters	
STAT. DELETE	Deleting statistics from the last measurement series	
TIME VIEW	Time and date view	
WEIGH. REPORT	Edit a report from weighings	
WEIGH. DATABASE	Direct access to the database of weighings	
VAR. 1 ALPHA	Inscribing universal variable No 1 (40 characters)	
VAR. 2 ALPHA	Inscribing universal variable No 2 (40 characters)	
VAR. 3 ALPHA	Inscribing universal variable No 3 (40 characters)	
VAR 4 ALPHA	Inscribing universal variable No 4 (40 characters)	
VAR. 5 ALPHA	Inscribing universal variable No 5 (40 characters)	
VAR. 1 DIGIT.	Inscribing universal variable No 1 (40 digits)	
VAR. 2 DIGIT.	Inscribing universal variable No 2 (40 digits)	
VAR. 3 DIGIT.	Inscribing universal variable No 3 (40 digits)	
VAR. 4 DIGIT.	Inscribing universal variable No 4 (40 digits)	
VAR. 5 DIGIT.	Inscribing universal variable No 5 (40 digits)	
KEYPAD MODE	Selecting a keypad mode	
LO THRESHOLD	Setting minimal mass as a condition of operation some functions	
STRT M. ADJ.	Start mass adjustment procedure (user calibration)	
CALIBRATION	Span adjustment procedure (user calibration)	
AVER. TIME	Averaging time for weighing animals	
N1 *	Setting counter N1 (number of weighings which triggers off automatic printing of c label)	
M1 *	Setting mass M1 (mass of weighings which triggers off automatic printing of c label)	
N2 *	Setting counter N2 (number of weighings which triggers off automatic printing of cc label)	
M2 *	Setting mass M2 (mass of weighings which triggers off automatic printing of cc label)	
C LABELS NO *	Setting the number of C labels to be printed	

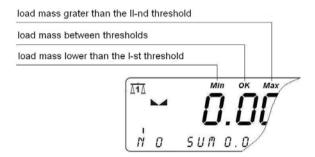

CC LABELS NO *	Setting the number of CC labels to be printed	
MULTIPLIER	Setting the recipe multiplier	
RECIPE CODE	Inscribing a recipe code for a quick search of recipes	
RECIPE REPORT	Access to the database of reports from recipes (e.g. for printing them)	
CONTRACTOR CODE *	Inscribing a contractor code for a quick search of contractors	
MATERIAL CODE *	Inscribing a material code for a quick search of materials	
PRINT C *	Printing a C label	
PRINT CC *	Printing a CC label	
NEW ASSORT.	Adding a new product to the assortment database	
NEW CONTRACT. *	Adding a new contractor to the database of contractors	
NEW MATERIAL. *	Adding a new material to the database of materials	
NEW RECIPE.	Adding a new recipe to the database of recipes	
DIGIT. BATCH NO	Inscribing 10-digit batch number	
ALPHA. BATCH NO	Inscribing 10-character batch number	
LOSS OF MASS	Loss of mass in per cents	

^{* -} This function is not attached to the RECIPE software.

24.3. +/- control according to an inscribed standard mass

While in weighing mode users can define (MIN, MAX).

Procedure:


- You will see the following display:

- Using to numerical keys inscribe a MAX threshold and confirm with FINTER.
- Software returns to WEIGHING.

While setting these thresholds following features are important:

• Symbols: Min, OK, Max in the upper line of the display:

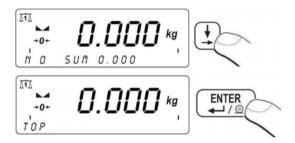
• Designation of the proper interval (OK) on the bargraph:

Three fields of signalling LEDs over the display:

Left – red – when this field shines the mass is lower than the **Min** threshold:

Middle – green – Designation of the proper interval **OK** between **MIN** and **MAX** thresholds;

Right – red – when this field shines the mass is higher than the **Max** threshold.


Notice:

Users can use this function in other work modes like counting pieces, weighing in percents etc. Only values and units can change.

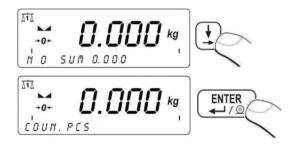
24.4. Maximal force latch

Procedure:

• Enter the **TOP** work mode:

• **TOP** selection is signalled by the **Max** pictogram in the upper line of the display:

- When a force acting on the pan changes on the display only the maximal value can be seen,
- · Remove the acting force,
- Press •0• before the next measurement.

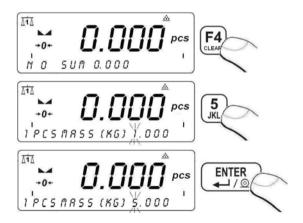

Return to weighing:

See 11.3.

24.5. Counting pieces

The standard software is equipped in a counting pieces procedure. If counting pieces is to be proceeded in a package/container, tare the package/container first.

24.5.1. Enabling work modes



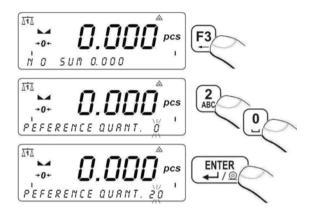
COUNTING PCS procedure is active when is displayed.

24.5.2. Setting standard mass by inscribing the mass of a single piece

Procedure:

Enter COUNTING PCS and then:

Press to initialise **COUNTING PCS**. with automatic setting of standard mass.


Notice:

The mass of a single piece cannot be lower than 0.1d and greater than the full scale.

24.5.3. Setting the standard mass by declaring the quantity of a sample

Procedure:

Enter COUNTING PCS, and then:

While inscribing a sample quantity it should be remembered that the mass of a single piece should not be lower than **0.1 d** and the total mass of a sample (all pcs) should not be lower than **1 d**. An error appears when this two conditions are not performed.

After inscribing a required sample quantity press and you will see:

Software automatically calculates a single piece mass and goes to **Counting pieces**:

Notice:

If a user confirms a sample with with the empty weight pan, **<Err6>** will be displayed.

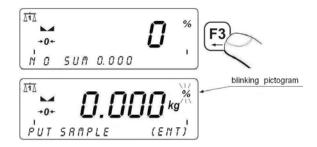
Return to weighing:

See 11.3.

24.6. Deviation in percents in relation to a standard mass

Software can help to control deviations (in %) from a standard (nominal) mass. The standard mass can be settled by weighings or inscribing.

24.6.1. Starting weighing in per cents



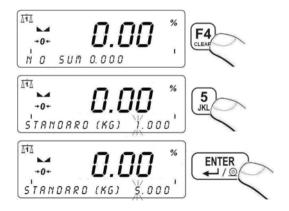
• Selection of **DEVIATIONS** is confirmed by displaying "%" pictogram in the upper right corner of the display.

24.6.2. Weighing a standard mass

Procedure:

Enter **DEVIATIONS** and then:

- Put a load to be a standard mass on the weight pan,
- After the equilibrium is reached (►) press (►)
- You will see the indication of 100,00%,
- From this moment all results will be displayed in percents:


Return to weighing:

See 11.3.

24.6.3. Inscribing a standard mass

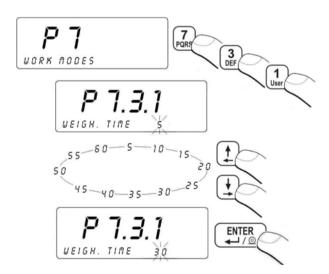
Procedure:

Enter **DEVIATIONS** and then:

From this moment all results will be displayed in percents.

Return to weighing:

See 11.3.


24.7. Weighing animals

24.7.1. Weighing time setting

Users can set in seconds the time of weighing an animal. During this time averaging is performed.

Procedure:

Enter <P7 WORK MODES> and then:

Return to weighing:

24.7.2. Starting the work mode

 WGH. ANIMALS mode is signalled by showing ➤ pictogram in the right side of the picture.

24.7.3. Procedure of weighing animals

- After starting ANIM. WEIGH. (see 24.7.2) put the animal on the platform,
- Press F3 to start the process of weighing,
- After the procedure of weighing is completed the result will be latched,
- Additionally you will hear a short "beep" sound and see Hold pictogram in the left part of the display:

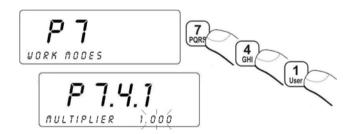
- Before initiating the next weighings press (+0+) key,
- Weighing procedure can be terminated while in progress by pressing ESC.

Return to weighing:

24.8. Recipes - filling/dosing

PUE C41 terminals are equipped in threshold signalling fields and 3 internal optoinsulated inputs supplied from 5÷24V DC and outputs with reed relays freely configurable.

Caution:


- 1. Working mode "Recipes" does not support continuous printouts;
- 2. See an example of dosing with recipes in ch. 32.3 of this manual.
- 3. Inductive loads connected to the dosing indicator should have protections against the coil induction phenomenon. Example connetion diagrams of dosing indicators outputs with direct and alternative current protections are in point 32.6 of the manual.

24.8.1. Recipe multiplier

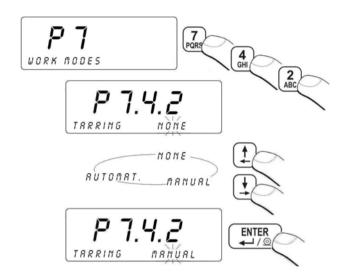
Parameter <P7.4.1 MULTIPLIER> can proportionally change all the nominal masses of declared ingredients.

Procedure:

• Enter <P7 WORK MODE> and then:

Inscribe a parameter value and confirm it with

Return to weighing:


See 11.3.

24.8.2. Setting tare in the filling/dosing mode

In **<P7.4.2 TARRING>** you can enable/disable tarring after every ingredient.

Procedure:

• Enter <P7 WORK MODE> and then:

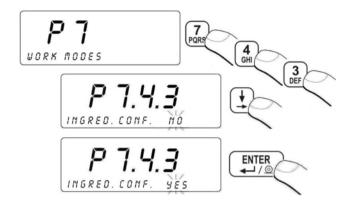
NONE - Masses of subsequent ingredients

are totalized on the main display

MANUAL - ingredients tarred manually

AUTOMAT. - automatic tarring after every ingredient

Return to weighing:


See 11.3.

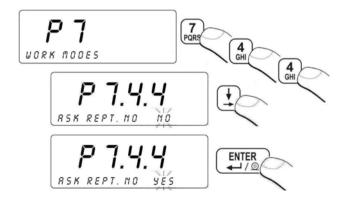
24.8.3. Manual confirmation of every ingredient

In **<P7.4.3 INGRED. CONF.>** you can if ingredients should be confirmed manually or not and set the parameter to **YES** if you want the manual confirmation or to **NO** for automatic pass to the next ingredient).

Procedure:

Enter <P7 WORK MODE> and then:

Return to weighing:


See 11.3.

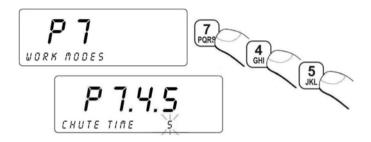
24.8.4. Number of cycles declaration

In case of setting <P7.4.4 ASK REPT. NO> to YES, sers can declare at the start of dosing / filling process (see ch.25.6.2) can declare the number of cycles (automatic repetitions of dosing/filling of the selected recipe).

Procedure:

• Enter <P7 WORK MODE> and then:

Return to weighing:


See 11.3

24.8.5. Chute time delay

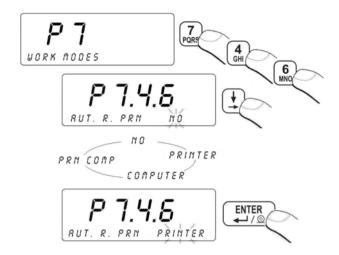
In **<P7.4.5 CHUTE TIME>** users can set an additional period of time that is counted down after mass reaches the level below **LO** value.

Procedure:

• Enter <P7 WORK MODE> and then:

Using numerical keys inscribe the required value (0 to 60 s) and confirm it with $\frac{\text{ENTER}}{4}$.

Return to weighing:


See 11.3.

24.8.6. Automatic printout of report

Every dosing / filling procedure may be terminated with printing reports that sums up the process.

Procedure:

• Enter <P7 WORK MODES> end then:

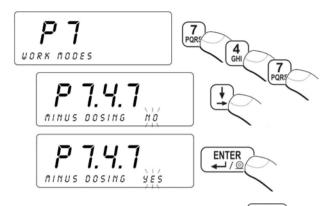
NONE - No automatic printout

PRINTER - Automatic printout on a connected printer

COMPUTER - Automatic printout on a connected computer

PRN COMP - Simultaneous automatic printout on a connected printer and computer

Return to weighing:


See 11.3.

24.8.7. Negative dosing

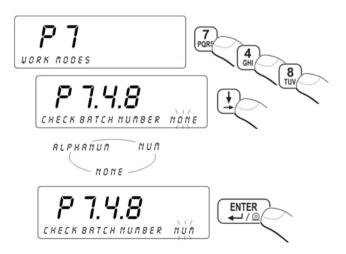
Parameter <P7.4.7 MINUS DOSING> allows conducting weighings by substracting mass. Indication in this mode is preceded by sign "-". Chute functions are not accessible in this mode.

Procedure:

Enter <P7 WORK MODES> end then:

Set the parameter and confirm by pressing

Return to weighing:


See 11.3.

24.8.8. Product series number

Parameter <P7.4.8 CHECK BATCH NUMBER> allows to enter a number of series for each product in a recipe.

Procedure:

Enter <P7 WORK MODES> end then:

NONE - Entering a number of series disabled,

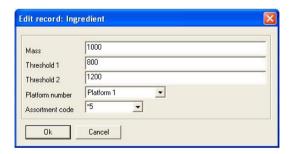
NUM - Possibility of entering a digital number of series,

ALPHANU - Possibility of entering a alfanumerical number of series. **M** (text message style)

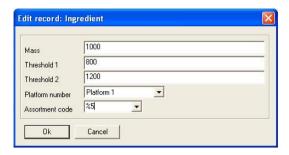
Return to weighing:

See 11.3.

24.8.9. Additional product

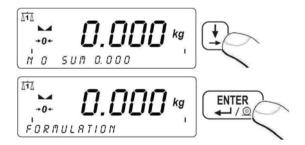

An additional product which can be added to a recipe without weighing. Such products are identified by the first character in the product code.

The first character can be:


- Weight is estimated by multiplying the entered quantity by unit mass entered in a recipe.
- % Entering the precise product weight.

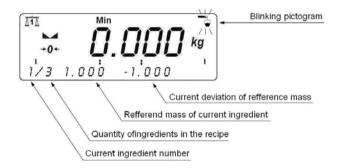
The example of ascribing a product code for any recipe in the "Edytor WPW" program.

Setting additional ingredient - entering multiplier


Setting additional ingredient - entering weight

Product codes can be entered for permanent use in the assortment database. In that case the code is visible in the **Assortment code** field.

24.8.10. Work mode setting


When you select an operating mode **DOSING/RECIPES** it is confirmed by pictogram in the top right corner of the display.

24.8.11. Process of dosing / filling

- 1. Press f1 to select a required recipe and confirm it with In the bottom line you will see the name of the selected recipe,
- 2. Start process by pressing F3
- 3. If **<P7.4.7 MINUS DOSING>** is enabled the dosing process is performed with the "-" sign. Weighings registered in the database are of positive value "+",
- 4. If **<P7.4.8 CHECK BATCH NUMBER>** is set to **ALFA** or **NUM**, there is a number of product series prompted before every weighing,
- 5. If in the recipe an additional product is defined then its weight or multiplier is set when it appears on the screen.

At the moment you start the process:

- the pictogram starts blinking,
- the keyboard is blocked until the process is completed,
- in the bottom line the first ingredient is displayed for about 1s and then you will see:

6. After weighing the first ingredient you will see the name of the next ingredient in the bottom line and then it will the process of weighing it.

In case if:

- The parameter <P7.4.3 INGRED. CONF.> is set to YES (manual confirmation) the <CONFIRM INGREDIENT> message is displayed in the bottom line. Confirm it with ENTER
- 7. After the last ingredient you will see the **<RECIPE END>** and then it returns to displaying the recipe name.

In case if:

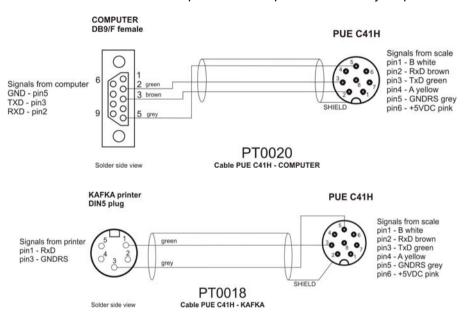
The parameter <P8.2.5 P1 CHUTE> prescribes an output number. After the dosing procedure is completed you will see the <PLATF. 1 CHUTE> message (it starts the chute of platform 1) is displayed and the system is waiting for the mass lower than the preset LO threshold. The chute will be closed after the time from <P7.4.5 CHUTE TIME> is counted down (see ch. 25.5. of manual).

Process stopping:

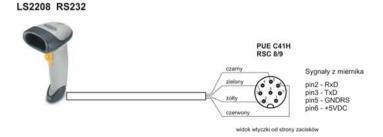
Users can stop the process of dosing/filling press 4. It is signalled by continuous displaying of 4. You will see **<RECIPE STOP>** for one second and then the program returns to displaying the recipe name.

Process holding up:

Users can hold up the process by pressing $^{\texttt{F2}}$ or $^{\texttt{ESC}}$. It is signalled by blinking of the bottom line. Press $^{\texttt{F3}}$ to continue the process. When you press $^{\texttt{F4}}$ you stop the process.

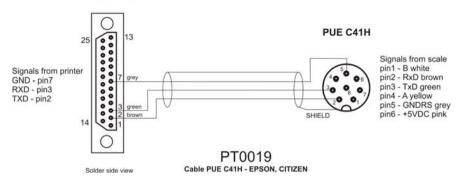

Return to weighing:

See 11.3.

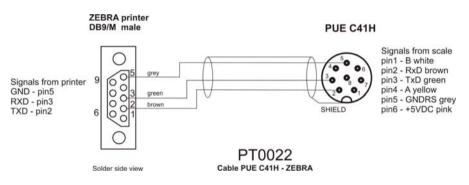

25. DIAGRAMS OF CONNECTION CABLES

The scale in STANDARD version can cooperate with:

- computers
- · slip printers KAFKA, EPSON, KYOLINE
- label printers CITIZEN, ZEBRA,
- external buttons PRINT, TARA, ZERO,
- internal I/O module of 3 optoinsulated inputs / 3 reed relay outputs.



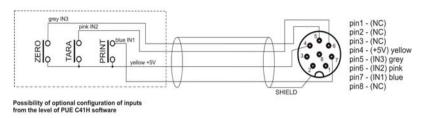
Scale - Kafka or scale KyoLine printer cable



Scale - barcode scanner (LS2208)

EPSON, CITIZEN printer DB25/M male

Scale - printer (CITIZEN, EPSON) cable


Scale - Zebra printer cable

Cable PUE C41H - 3IN/3OUT (RSTS-8-184-2M)

Scale - 3IN/3OUT (RSTS-8-184/2M) cable

PUE C41H

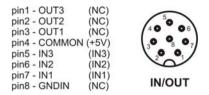
PT0021
External Buttons PRINT, TARA, ZERO to PUE C41H

PRINT, TARA, ZERO external buttons cable

26. CONNECTORS

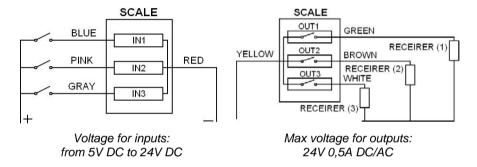
Caution:

In accordance to the number of mounted modules the number and the placement of glands and connectors can vary. Connectors and glands mentioned in the standard solution appears in every option in the same place regardless of the option.

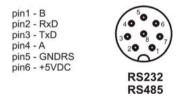

26.1. 3IN/3OUT connector

Colours of cable 3IN/3OUT conductors

Cable "M12" 8pin (e.g.: RSTS 8 -184/2M)


INPUTS		OUTPUTS	
description	wire colour	description	wire colour
GND IN	RED	COMMON	YELLOW
IN1	BLUE	OUT1	GREEN
IN2	PINK	OUT2	BROWN
IN3	GRAY	OUT3	WHITE

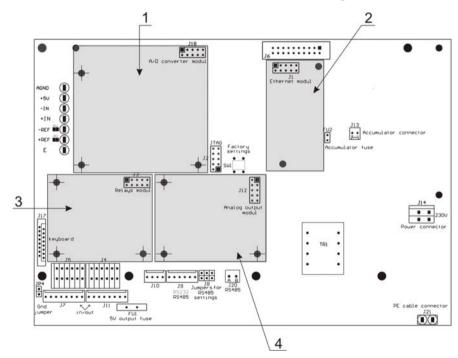
Description of connector 3IN/3OUT



3IN/3OUT connector

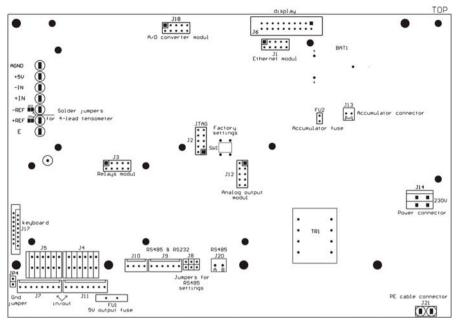
Exemplary scheme of connections for inputs:

26.2. RS232, RS485 connector


RS232, RS485 connector

27. SPECIFICATION OF ADDITIONAL MODULES

Apart from standard interface, it is possible to equip terminals with additional module increasing functionality of devices:


- ET Ethernet module.
- AN analogue outputs module,
- PK 1 relay outputs module,
- WE 8 8 inputs / 8 outputs module,
- WE 4 4 inputs / 4 outputs module,
- **DP 1** Additional A/D converter module (for second platform)
- RS D1 RS485 led out via a gland

Main board view with some additional modules being installed:

- 1 additional A/D module,
- 2 Ethernet module,
- 3 relay outputs module,
- 4 analogue output module.

Main board view with connectors for additional modules:

J18 – DP 1 module

J1 - Ethernet ET 1G, ET 1 D module

J3 - Relay module

J12 – WE 8 module

J12 - AN module

27.1. Ethernet module - ET

Ethernet module PCB

This module is designed according to TCP/IP 10/100 Mbit/s standard. It comprises two signalling LED's:

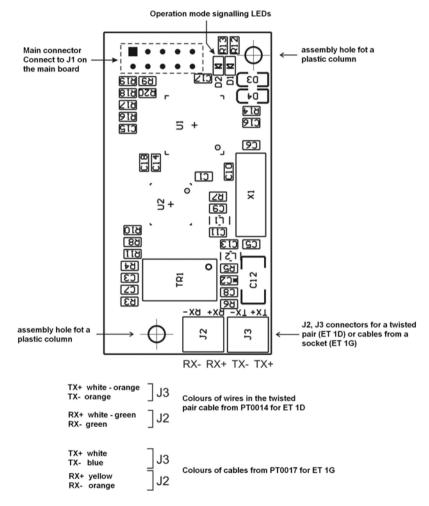
- D2 lights Ethernet connection established,
- D1 blinks transmission 10Mbit/s or 100Mbit/s.

Module accessible in two versions:

ET 1G: with external connector on the scale housing;

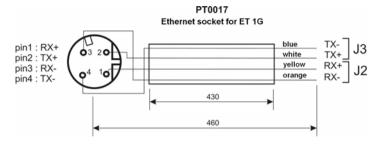
ET 1D: with cable (twisted pair) about 3m length led out via the gland on the scale housing. Intended for connecting to a switch (not computer). Terminated with a standard RJ45 plug.

27.1.1. Mounting way in PUE C41H

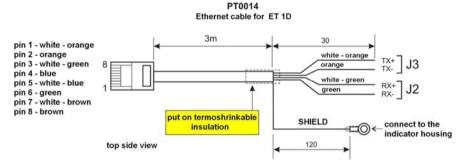

This module is intended for mounting inside PUE C41H indicators. It is mounted to the main board to the 10-pin **J1** connector.

- For ET 1G version of module a 4-pin Ethernet connector is installed on the back wall of the housing.
- For ET 1D version of module a gland is installed on the back wall of the housing through which a shielded cable is led out (twisted pair 3m length terminated with RJ45 plug).

Mounting procedure:


- 1. Unplug from mains;
- 2. Unscrew the back wall of the housing;
- 3. Install the module in J1 on the main board;
- During installation turn your attention to plastic columns. They should be placed one side in mounting holes in the main board and the other side in the mounted module;
- 5. For ET 1G unscrew one of the plugged glands and install a socket instead;
- 6. For ET 1G version connect wires from **PT0017** socket to **J2** and **J3** connectors on the Ethernet module according to the description below;
- 7. For ET 1D version unplug one of the glands and led the **PT0014** (twisted pair) cable out;
- For ET 1D version connect the shield of PT0014 cable to the indicator housing (screwed terminator, 4mm diameter);

- Connect the PT0014 cable to J2 and J3 connectors on the Ethernet module according to the description;
- 10. Cable (twisted pair) or wires from the Ethernet socket connect to the group of wires (unhook band clips fastening the group of wires, lay the cable or conductors from the socket and hook the band clips). Band clips of multiple usage;
- 11. Screw down the back wall.



Ethernet module on the main board of PUE C41H

27.1.2. Drawings of sockets and cables for Ethernet

Ethernet socket for ET 1G version

Ethernet cable for ET 1D (version for a SWITCH)

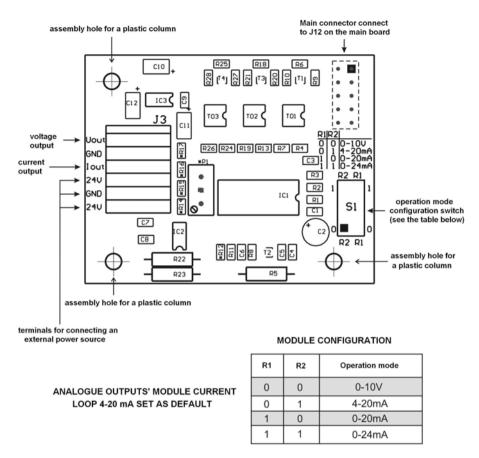
27.2. Analogue output module

Module of analogue outputs

Module accessible in three configurations:

- Voltage output AN 0-10V
- Current output AN 4-20mA
- · Current output AN 0-20mA

27.2.1. Technical specification

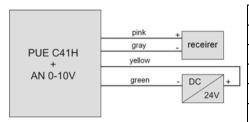

Work modes	4 - 20mA , 0 - 20mA, 0 - 10V
Resolution	16 bit
Current output resistance	<500€
Voltage output resistance	>400 ℂ
Power supply	24V DC (12 - 30V DC) max 40mA

27.2.2. The way of installing inside PUE C41H

These modules are intended to mount inside PUE C41H. They need to be connected to the 10-pin J12 connector. For all configurations of AN, there is a gland installed on the back wall of the housing. A 3-meter shielded cables are led out via the gland. Wires should be free from insulation.

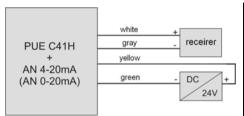
Installing procedure:

- Unplug the scale from mains;
- 2. Unscrew and take off the back wall of the housing;
- 3. Install your module in J12 on the main board;
- 4. During installation turn your attention to plastic columns. They should be placed one side in mounting holes in the main board and the other side in the mounted module;
- 5. Led the PT0015 cable through one of the free glands;
- Connect the PT0015 cable to J3 on the analogue module according to the description below;
- Connect the PT0015 cable shield to the housing (screwed terminator, 4mm diameter);
- 8. The cable connect to the group of wires (unhook band clips fastening the group of wires, lay the cable and hook the band clips). Band clips of multiple usage;
- Screw down the back wall.

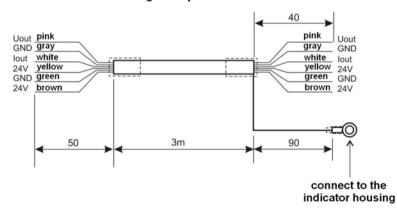

Mounting of AN module on the main board of PUE C41H

27.2.3. Configuration of work modes of analogue modules

A work mode of analogue modules can be set using **S1** switch according to the drawings above (table "configuration of analogue modules"). Near the **S1** switch on the PCB you can find a description.


27.2.4. Connections to AN module

Drawing of connections of voltage output:


COLOURS OF WIRES		
Colour	Signal	
Pink	U _{OUT} +	
Gray	GND	
Yellow	+24V DC	
Green	GND	

Drawing of connections of current loop:

COLOURS OF WIRES		
Colour Signal		
White	l _{out} +	
Gray	GND	
Yellow	+24V DC	
Green	GND	

PT0015
Analogue outputs' cable

Cable for analogue output

27.3. Relay module - PK1

Relay module PCB - PK1

This is an alternative solution for reed relay outputs present on the main board in the standard solution. The usage of this module excludes the usage of standard reed relay outputs. The advantage of using this module are the electrical parameters of contacts. All outputs can be freely configured (from the level of parameters). The cable is led out via a gland on the back wall of the housing (3m length).

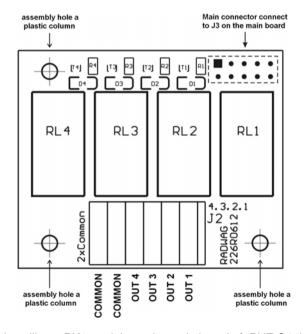
Caution:

PK1 modules constitutes an alternative solution for reed relays present on board. Using this module disables reed relays' outputs.

27.3.1. Technical specification

Quantity of relays	4	
Wire diameter	0,14 ÷ 0,5mm ²	
Current-carrying capacity of contacts	230V AC - 2A, 30V DC - 2A	

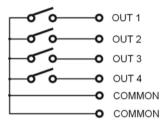
Caution:


When inductive load it is advisable to use a suppression circuit (LC or voltage-dependent resistors) installed next to the receptor. Parameters of these circuits are determined by clients.

27.3.2. Installing in PUE C41H indicators

These module are intended to mount inside PUE C41H indicators. It is mounted to the main board to the 10-pin **J3** connector. An additional gland is installed on the back wall and a 3m cable is led out through it Wires should be free from insulation.

Installing procedure:


- 1. Unplug the scale from mains;
- 2. Unscrew and take off the back wall of the housing;
- 3. Install your module in **J3** on the main board;
- 4. During installation turn your attention to plastic columns. They should be placed one side in mounting holes in the main board and the other side in the mounted module PK1:
- 5. Led the PT0016 cable through one of plugged glands;
- 6. Connect the **PT0016** cable to **J2** connector on the PCB according to the description below;
- 7. The cable connect to the group of wires (unhook band clips fastening the group of wires, lay the cable and hook the band clips). Band clips of multiple usage;
- 8. Screw down the back wall.

Installing a PK1 module on the main board of PUE C41H

27.3.3. Drawing of cables and outputs

Relay outputs diagram:

SIGNALS AND DESIGNATIONS OF CONDUCTORS		
Wire number Description		
1	OUT 1	
2	OUT 2	
3	OUT 3	
4	OUT 4	
5 (yellow - green)	Common	

27.4. WE 4 - 4 inputs / 4 outputs module

WE 4 module comprises 4 optoinsulated inputs and 4 optoinsulated outputs of reed relays. The input / output wires are led out via a gland on the back wall of the housing (3m length).

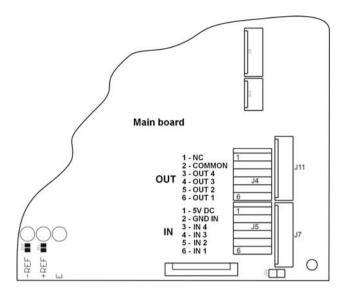
Caution:

As standard indicator is equipped with 3 in and 3 out sockets.

27.4.1. Technical specification

Parameters of outputs		
Quantity of outputs	4	
Type of outputs	Reed operation contacts	
Wire diameter	0,14 - 0,5mm ²	
Maximal load-current contact capacity	0,2A DC	
Maximal forward voltage	50V DC	
Parameters of inputs		
Quantity of inputs	4	
Input type	Optoinsulated	
Wire diameter	0,14 – 0,5mm ²	
Control voltage range	5 -24V DC	

27.4.2. Colours of cables for I/O


INPUTS		OUTPUTS	
wire number	description	wire number	description
1	IN 1	6	OUT 1
2	IN 2	7	OUT 2
3	IN 3	8	OUT 3
4	IN 4	9	OUT 4
5	GND IN	10 (yellow - green)	COMMON

27.4.3. Installing method in PUE C41H indicators

WE 4 modules are equipped in two cables, one for inputs and one for outputs.

Installing procedure:

- 1. Unplug the scale from mains;
- Unscrew and take off the back wall of the housing;
- 3. If inputs and outputs are installed it the same time, dismount I/O socket and install a PG9 gland instead. LED the PT0016 cable through it (the same way like in case of relay outputs). If only 4 inputs or 4 outputs are installed unplug one of the existing glands and led the PT0016 cable through it.
- 4. Connect the **PT0016** cable to the **J5** connector for inputs or to the **J4** for outputs, on the main board of PUE C41H.
- The cable connect to the group of wires (unhook band clips fastening the group of wires, lay the cable and hook the band clips). Band clips of multiple usage;
- 6. Screw down the back wall.

Installing WE4 modules on the main board of PUE C41H

27.5. WE 8 - 8 inputs / 8 outputs module

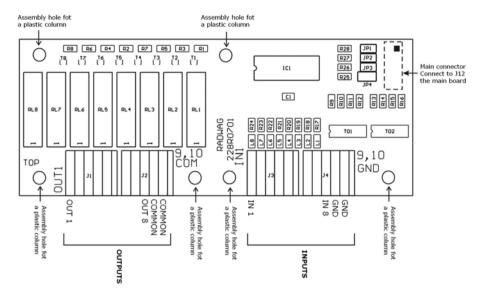
8 inputs / 8 outputs PCB - WE 8

WE 8 modules can be connected as an alternative to the module of analogue output and relay module. Its task is to expand the functionality of an indicator for 8 inputs and 8 outputs freely configurable. It expands functionality of terminals. It comprises on board optoinsulated inputs and outputs freely configurable from the level of indicator.

Caution:

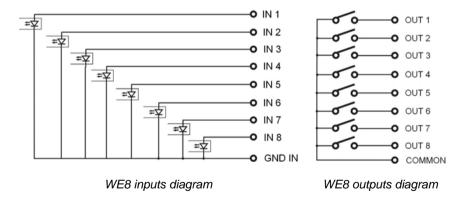
If **WE 8** module is installed in it does not allow to install **AN** analogue output module and/or **PK 1** module of relays.

27.5.1. Technical specification


Parameters of outputs		
Quantity of outputs	8	
Type of outputs	Reed operation contacts	
Wire diameter	0,14 - 0,5mm ²	
Maximal load-current contact capacity	0,2A DC	
Maximal forward voltage	50V DC	
Parameters of inputs		
Quantity of inputs	8	
Input type	Optoinsulated	
Wire diameter	0,14 – 0,5mm ²	
Control voltage range	5 -24V DC	

27.5.2. Installing method in PUE C41H indicators

Module is designated for assembly inside indicator PUE C41H. Module is assembled to main board of indicator to 10-pin **J12** connector. For module **WE8** gland is installed on casing lid, 3m cable ended with insulated conductors is led through gland.


Installing procedure:

- 1. Unplug the indicator (remove the plug from socket 230V);
- 2. Unscrew the casing lid (back part of indicator casing);
- 3. Install the module in connector J12 on main board;
- 4. While installing module pay attention to plastic posts fastening to main board. They should be placed in assembly holes in main board and in assembly holes in module WE 8,
- In one of free glands remove the stopper and led through it cable IN/OUT (if necessary use bigger gland depending on cable diameter);
- 6. Connect the cable IN/OUT to joint **J1**, **J2** for outputs and **J3**, **J4** for inputs on module 8IN/8OUT according to description given in table;
- Connect cable IN/OUT to group of conductors (undo band clips fastening group of conductors, lay the cable and clamp band clips – multiple use band clips);
- 8. Assembly cover of indicator casing.

A WE 8 module placement on the main board of PUE C41H

27.5.3. I/O diagram

27.5.4. Description of input output wires

Signals led out with two cables 10x0,5mm² with numbered conductors.

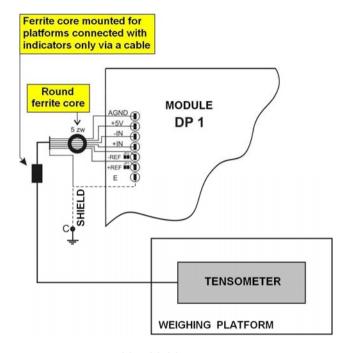
INPUTS		OUTPUTS	
Wire number	description	Wire number	description
1	IN 1	1	OUT1
2	IN 2	2	OUT2
3	IN 3	3	OUT3
4	IN 4	4	OUT4
5	IN 5	5	OUT5
6	IN 6	6	OUT6
7	IN 7	7	OUT7
8	IN 8	8	OUT8
9	GND IN	9	COMMON

27.6. DP1 - module for an additional platform

DP1 PCB

DP1 modules increase functionality of PUE C41H indicators by possibility of adding an additional platform. It is intended to mount inside the indicator. DP1 modules require an additional gland to led in the platform cable.

27.6.1. Technical specification

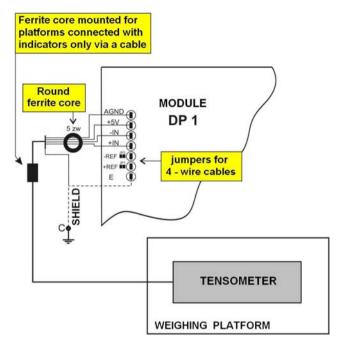

Useful number of internal divisions	8 388 608
OIML class	III
Number of verification divisions	6 000
Maximal change of input signal	19mV
Maximal voltage per verification divisions	3,3 μV
Minimal voltage per verification divisions	1μV
Minimal tensometer impedance	90Ω
Maximal tensometer impedance	1200Ω
Tensometer excitation voltage	5V
Types of tensometers	4 or 6 wires + shield

27.6.2. Colours of wires

RADWAG Designation	Colour	Designation of soldering pads on PCB's.
+INPUT	brown	+ 5V
-INPUT	green	AGND
+OUTPUT	yellow	+ IN
- OUTPUT	white	- IN
+SENSE	grey	+ REF
- SENSE	pink	- REF
EKRAN	yellow-green	(according to the rule of connecting shields)

27.6.3. Connecting additional platforms

Connecting 6-wire tensometers



E - tensometer cable shield

REF+ - "SENSE +" from tensometer (JP1 not soldered)
REF- - "SENSE -" from tensometer (JP2 not soldered)

IN+ - "OUTPUT+" from tensometer
IN- - "OUTPUT-" from tensometer
+5V - "INPUT+" from tensometer
AGND - "INPUT-" from tensometer

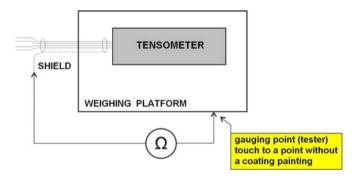
Connecting 4-wire tensometers

tensometer cable shield

REF+ - solder jumper JP1 REF- - solder jumper JP2

IN+ - "OUTPUT+" from tensometer
 IN- - "OUTPUT-" from tensometer
 +5V - "INPUT+" from tensometer
 AGND - "INPUT-" from tensometer

The rules of connecting shields from tensometer cable

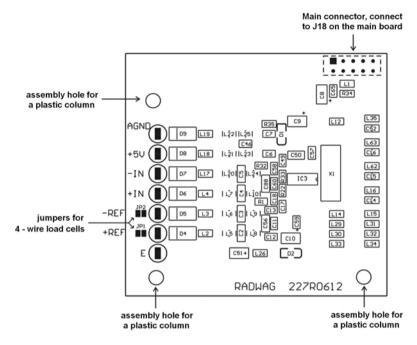

For assuring appropriate operation use the description below to connect the shield of the tensometer properly. In both cases (6- and 4-wire cables) the same way rule are valid:

	platforms connected to indicators in metal housing via a cable only	platforms electrically connected to indicators' metal housings e.g. pillars, racks
Load cells without internal shield connection to the tensometer body	POINT C	E
Load cells with internal shield connection to the tensometer body	POINT C	POINT C

Point C – screwed terminal electrically connected to the metal housing of the indicator (possible using of soldering eye) **E** – soldering pad on a **DP1** PCB

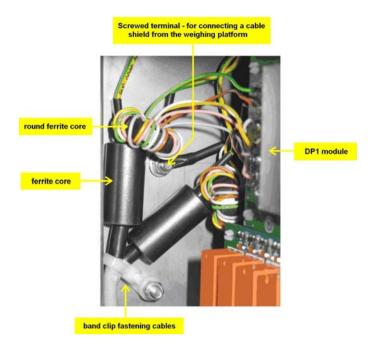
The way of checking connection between the shield and the tensometer body

Use an ohmmeter for this purpose.



27.6.4. Installing in PUE C41H housing

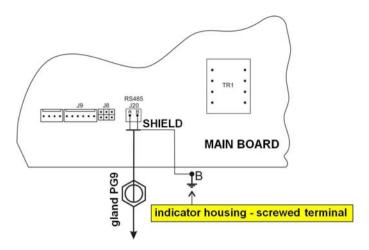
DP1 modules are intended to mount inside PUE C41H housings. It is mounted to the main board to the 10-pin **J18** connector. For **DP1** module an additional gland is installed on the back wall of the housing.


- Unplug the scale from mains;
- 2. Unscrew and take off the back wall of the housing;
- 3. Install your module in J18 on the main board;

4. During installation turn your attention to plastic columns. They should be placed one side in mounting holes in the main board and the other side in the mounted module **DP1**.

Installing DP1 module on the main board of PUE C41H

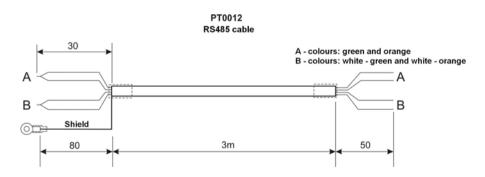
- 5. Led a tensometer cable through the PG7 gland next to the gland of main platform;
- 6. Put on a ferrite core on the cable (core of appropriate internal diameter);
- 7. Turn the wires on the ferrite core (5 turns);
- 8. Solder the wires to the pads on the DP1. **Use soldering iron** (no solder guns or Rother inductive devices);
- 9. Fasten the cable to the housing using a band clip (to the screwed terminal on the back wall of the housing);
- 10. Screw down the back wall.



27.7. RS485 led out via RS 1D gland

A version with the **RS485** interface led out via a gland (in the standard solution RS485 is present in a socket). A 3m cable is led out through the gland.

27.7.1. Installing inside the PUE C41H housing


- 1. Unplug the scale from mains;
- 2. Unscrew and take off the back wall of the housing;
- 3. Unplug one of the unused glands and led out the **PT0012** cable through it;
- 4. Connect the **PT0012** cable to the **J20** connector (ARK type) on the main board of PUE C41H:

PT0012 cable connecting to the main board of PUE C41H

- 5. Connect the **PT0012** shield to the housing (4mm screwed terminal on the back wall)
- The cable connect to the group of wires (unhook band clips fastening the group of wires, lay the cable and hook the band clips). Band clips of multiple usage;
- Screw down the back wall.

27.7.2. RS 485 - PT0012 cable drawing

28. COMMUNICATION PROTOCOL

28.1. General information

- A. A character protocol scale-terminal has been designed for communication between RADWAG scales and external devices via RS-232 interface.
- B. It consists of commands sent from an external device to the scale and a responses from a scale.
- C. Responses are sent every time after receiving a command (reaction for any command).
- D. Using commands allows users to receive some information about the state of scale and/or influence the operation e.g.: Requesting weighing results, display control.

28.2. A set of commands for RS interfaces

Commands	Description of commands
Z	Zeroing
Т	Tarring
ОТ	Get tare
UT	Set tare
S	Send the stable result in basic unit
SI	Send the result immediately in basic unit
SIA	Get immediate results from both platforms in basic units
SU	Send the stable result in current unit
SUI	Send the result immediately in current unit
C1	Switch on continuous transmission in basic unit
C0	Switch off continuous transmission in basic unit
CU1	Switch on continuous transmission in current unit
CU0	Switch off continuous transmission in current unit
K1	Lock the scale keyboard
К0	Unlock the scale keyboard
S1	Start dosing/filling
S0	Stop dosing/filling
DH	Set lower threshold

UH	Set upper threshold
ODH	Read lower threshold
OUH	Read upper threshold
PC	Send all implemented commands

Notice:

- 1. Each command have to be terminated in CR LF:
- 2. The best Policy for communication is not sending another command until the former answer has been received.

28.3. Respond message format

After sending a request message you can receive:

XX_A CR LF	command accepted and in progress
XX_D CR LF	command completed (appears only after XX_A)
XX_I CR LF	command comprehended but cannot be executed
XX _ ^ CR LF	command comprehended but time overflow error appeared
XX _ v CR LF	command comprehended but the indication below the
XX _ OK CR LF	Command done
ES_CR LF	Command not comprehended
XX _ E CR LF	error while executing command – time limit for stable result exceeded (limit time is a descriptive parameter of the scale)

XX - command name

substitutes spaces

28.4. Command's description

28.4.1. Zeroing

Syntax Z CR LF

Possible answers:

Z_A CR LF - command accepted and in progress

Z_D CR LF - command completed

Z_A CR LF - command accepted and in progress

Z_^ CR LF - command comprehended but zero range overflow appeared

Z_A CR LF - command accepted and in progress **Z_E CR LF** - time limit for stable result exceeded

Z_I CR LF - command comprehended but cannot be executed

28.4.2. Tarring

Syntax: T CR LF

Possible answers:

T_A CR LF - command accepted and in progress

T_D CR LF - command completed

T_A CR LF - command accepted and in progress

T_v CR LF - command comprehended but tare range overflow appeared

T_A CR LF - command accepted and in progress
T E CR LF - time limit for stable result exceeded

T_I CR LF - command comprehended but cannot be executed

28.4.3. Get tare value

Syntax: OT CR LF

Possible answers:

OT_TARA CR LF - command executed

Frame format:

1	2	3	4-12	13	14	15	16	17	18	19
0	Т	space	tare	space		unit		space	CR	LF

Tare - 9 characters with decimal point justified to the right

Unit - 3 characters justified to the left

28.4.4. Set tare value

Syntax: UT_TARE CR LF, where TARE – tare value

Possible answers:

UT_OK CR LF - command executed

UT_I CR LF - command comprehended but cannot be executed

- command not recognised (possible wrong tare format)

Notice:

This protocole uses the dot character as a decimal point for separating the decimal fraction part.

28.4.5. Send the stable result in basic unit

Syntax: S CR LF

Possible answers:

S_A CR LF - command accepted and in progress
S E CR LF - time limit for stable result exceeded

S_I CR LF - command comprehended but cannot be executed

S_A CR LF - command accepted and in progress
MASS FRAME - mass value in basic unit is returned

Frame format:

1	2-3	4	5	6	7-15	16	17	18	19	20	21
S	space	stability	space	sign	mass	space	unit		CR	LF	

Example:

S CR LF - computer command

S _ **A CR LF** - command accepted and in progress

S _ _ _ _ 8 . 5 _ g _ _ CR LF – command done, mass value in basic unit is returned.

28.4.6. Send the result immediately in basic unit

Syntax: SI CR LF

Possible answers:

SI_I CR LF - command comprehended but cannot be executed at the

moment

SI_A CR LF - command accepted and in progress
MASS FRAME - mass value in basic unit is returned

Frame format:

1	2	3	4	5	6	7-15	16	17	18	19	20	21
s	1	space	stability	space	sign	mass	space	unit		CR	LF	

Example:

SICR LF - computer command

S I $_$? $_$ $_$ $_$ 1 8 . 5 $_$ k g $_$ CR LF - command done, mass value in basic unit is returned immediately.

28.4.7. Get immediate results from both platforms in basic units

Syntax: SIA CR LF

Possible answers:

SIA I CR LF - command comprehended but cannot be executed at the moment

MASS FRAME "P1" CR LF

MASS FRAME "P2" CR LF - mass values are immediately returned from both

platforms in basic units

Frame format with mass from subsequent platforms as indicator reply:

1	2	3	4	5	6	7-15	16	17	18	19	20	21
Р	n	space	stability	space	sign	mass	space	unit		CR	LF	

- weighing platform number

mass - 9 characters justified to the right

unit - 3 characters justified to the left

Example:

Let us assume that both platforms are connected to indicator PUE C41H.

SIACRLF – computer command

P1_?____118.5_g__CR LF P2____36.2_k g_CR LF - command done, mass values

from both platforms are returned in basic units

28.4.8. Send the stable result in current unit

Syntax: SU CR LF

Possible answers:

SU_A CR LF - command accepted and in progress SU_E CR LF - timeout while waiting for stable results

- command comprehended but cannot be executed SU I CR LF

SU A CR LF - command accepted and in progress

MASS FRAME - mass value in current unit is returned

Frame format:

1	2	3	4	5	6	7-15	16	17	18	19	20	21
S	U	space	stability	space	sign	mass	space	unit		CR	LF	

Example:

S U CR LF - computer command

S U _ A CR LF - command accepted and in progress

S U _ _ - _ 1 7 2 . 1 3 5 _ N _ CR LF - command done, mass

value in current unit is returned.

28.4.9. Send the result immediately in current unit

Syntax: SUI CR LF

Possible answers:

SUI_I CR LF - command comprehended but cannot be executed

SUI_A CR LF - command accepted and in progress

MASS FRAME - mass value in current unit is returned immediately

Frame format:

1	2	3	4	5	6	7-15	16	17	18	19	20	21
S	U	I	stability	space	sign	mass	space	unit			CR	LF

Example:

SUICRLF - computer command

SUI?_-__58.237_kg_CR LF - command executed and mass returned

28.4.10. Switch on continuous transmission in basic unit

Syntax: C1 CR LF

Possible answers:

C1_I CR LF - command comprehended but cannot be executed

C1_A CR LF - command comprehended and in progress

MASS FRAME - mass value in basic unit is returned

Frame format:

1	2	3	4	5	6	7-15	16	17	18	19	20	21
s	I	space	stability	space	sign	mass	space	unit		CR	LF	

28.4.11. Switch off continuous transmission in basic unit

Syntax: C0 CR LF

Possible answers:

C0_I CR LF - command comprehended but cannot be executed

C0_A CR LF - command comprehended and executed

28.4.12. Switch on continuous transmission in current unit

Syntax: CU1 CR LF

Possible answers:

CU1_I CR LF - command comprehended but cannot be executed

CU1_A CR LF - command comprehended and in progress

MASS FRAME - mass value in current unit is returned

Frame format:

1	2	3	4	5	6	7-15	16	17	18	19	20	21
S	U	ı	stability	space	sign	mass	space	unit		CR	LF	

28.4.13. Switch off continuous transmission in current unit

Syntax: CU0 CR LF

Possible answers:

CU0_I CR LF - command comprehended but cannot be executed

CU0 A CR LF - command comprehended and executed

28.4.14. Lock the scale keyboard

Syntax: K1 CR LF

Possible answers:

K1_I CR LF - command comprehended but cannot be executed

K1_OK CR LF - command executed

Caution:

This command is not remembered after restart

28.4.15. Unlock the scale keyboard

Syntax: K0 CR LF

Possible answers: K0_OK CR LF - command in progress

28.4.16. Initiating of dosing/filling

Syntax: S1 CR LF

Possible answers:

S1 I CR LF - command comprehended but cannot be executed

S1 OK CR LF - command in progress

28.4.17. Stop of dosing/filling

Syntax: S0 CR LF

Possible answers:

S0_I CR LF - command comprehended but cannot be executed

S0_OK CR LF - command in progress

28.4.18. Set lower threshold

Syntax: **DH XXXXX CR LF**, where: **XXXXX** – mass format

Possible answers:

DH_OK CR LF - command executed

ES CR LF - command not comprehended (wrong mass format)

28.4.19. Set upper threshold

Syntax: UH_XXXXX CR LF, where: XXXXX - mass format

Possible answers:

UH OK CR LF - command executed

ES CR LF - command not comprehended (wrong mass format)

28.4.20. Read lower threshold

Syntax: ODH CR LF

Possible answers: DH MASA CR LF - command executed

Frame format:

1	2	3	4-12	13	14	15	16	17	18	19
D	Н	space	mass	space		unit		space	CR	LF

Mass - 9 characters justified to the rightUnit - 3 characters justified to the left

28.4.21. Read upper threshold

Syntax: OUH CR LF

Possible answers: UH_MASA CR LF - command executed

Frame format:

1	2	3	4-12	13	14	15	16	17	18	19
U	Н	space	mass	space		unit		space	CR	LF

Mass - 9 characters justified to the rightUnit - 3 characters justified to the left

28.4.22. Send all implemented commands

Syntax: PC CR LF

Possible answers:

PC_A_"Z,T,S,SI,SU,SUI,C1,C0,CU1,CU0,PC,K1,K0,DH,UH,ODH,OUH,S1,S0,OT,UT" – command executed, the indicator have sent all the implemented commands.

28.5. Manual printouts / automatic printouts

Users can general manual or automatic printouts from the scale.

- Manual printouts can be performed after loading the pan and stabilizing indication by pressing
- Automatic printouts can be performed only after loading the pan and stabilizing indication.

Notice:

If a scale is verified printouts of immediate values are blocked.

Format frame:

1	2	3	4 -12	13	14	15	16	17	18
stability	space	sign	mass	space		unit		CR	LF

Stability character [space] if stable

[?] if not stable

[^] if an indication over the range

[v] if fan indication below the range

sign [space] for positive values or

[-] for negative values

mass 9 characters justified to the right unit 3 characters justified to the left command 3 characters justified to the left

Example 1:

_____1832.0_g__CR LF – the printout generated from the scale after pressing ENTER/PRINT.

Example 2:

?_-__2.2.37_Ib_CR LF - the printout generated from the scale after pressing ENTER/PRINT.

Example 3:

^_____0.000_kg_CR LF - the printout generated from the scale after pressing ENTER/PRINT.

28.6. Continuous transmission

The indicator can work in a continuous transmission mode. It can be switched on or off in parameters or using RS232 commands.

Frame format sent by the indicator when continuous transmission is set:

1	2	3	4 -12	13	14	15	16	17	18
stability	space	sign	mass	space		unit		CR	LF

Stability character [space] if stable

[?] if not stable

[^] if an indication over the range[v] if fan indication below the range

sign [space] for positive values or

[-] for negative values

mass 9 characters justified to the right unit 3 characters justified to the left command 3 characters justified to the left

28.7. Configuring printouts

If some information included are redundant or not sufficient and there is a necessity of changes you can design a non-standard printout. There is possible to create up to four standard printouts (see the chapter. 17).

29. ERROR MESSAGES

ERROR "XXX" ESC - RETURN TO PREVIOUS SETTING

(where: XXX – parameter name) – confirmed with **ENTER** of a wrong value in the user's menu,

Err2 - Value beyond the zero range,

Err3 - Value beyond the tare range,

Err4 - Calibration mass or start mass adjustment error

($\pm 1\%$ for weight, $\pm 10\%$ for start mass),

Err5 - Mass of a single piece lower than the 0.1 of scale division,

Err6 - Mass of all pcs (declared as standard) lower than one

division,

Err8 - Tarring / zeroing operation time exceeded,

NULL - Zero value from the AD converter,

FULL2 - Measurement range overflow,

HI - Display range overflow,

LH - Start mass error, the mass on the weighing platform

is beyond the acceptable range ±20 of start mass

30. TROUBLE SHOOTING

Problem	Cause	Solution
Scale switches off automatically	"t1" parameter set to "YES" (Power save)	In <p9 others=""> change <p9.3 auto="" switch.=""> to "NO"</p9.3></p9>
"LH" appears on the display	Weight pan not empty when switching on	Unload the pan. Indication returns to zero

31. TECHNICAL PARAMETERS

31.1. Scales for recipes - WPW/R

Scale type	WPW/R 6 C1/K	WPW/R 15 C1/K	WPW/R 30 C1/K	WPW/R 60 C2/K	
Max capacity	6kg	15kg	30kg	60kg	
Readability	2g	5g	10g	20g	
Tare range	-6kg	-15kg	-30kg	-60kg	
Pan size	290 × 360mm 400 × 500m				
Work temperature	- 10°C to +40°C				
Interfaces		RS 23	32, RS 485		
Ingress protection rating		IP	66/67		
Power supply	85-265V AC 50Hz and internal accumulator 6V				
Battery operation time	Up to 9 h				
Display		LCD wi	th backlight		

Scale type:	WPW/R 150 C2/K	WPW/R 300 C2/K	WPW/R 150 C3/K	WPW/R 300 C3/K	
Max capacity	150kg	300kg	150kg	300kg	
Readability	50g	100g	50g	100g	
Tare range	-150kg	-300kg	-150kg	-300kg	
Pan size	400 × 5	500mm	500 × 700mm		
Work temperature	- 10°C to +40°C				
Interfaces		RS 232,	RS 485		
Ingress protection rating		IP 6	6/67		
Power supply	85-265V AC 50Hz and internal accumulator 6V				
Battery operation time	Up to 9 h				
Display		LCD with	backlight		

31.2. Scales for recipes - WPW/R/H

Scale type:	WPW/R 3 H1/K	WPW/R 6 H2/K	WPW/R 15 H2/K	WPW/R 15 H3/K	WPW/R 30 H3/K	
Max capacity	3kg	6kg	15kg	15kg	30kg	
Readability	1g	2g	5g	5g	10g	
Tare range	-3kg	-6kg	-15kg	-15kg	-30kg	
Pan size	150 × 200mm	250 × 3	300mm	410 × 410mm		
Work temperature		- 10°C to +40°C				
Interfaces		RS	232, RS 48	5		
Ingress protection rating			IP 66/67			
Power supply	85-265V AC 50Hz and internal accumulator 6V					
Battery operation time	Up to 9h					
Display		LCD	with backlig	jht		

Scale type:	WPW/R 60 H3/K	WPW/R 150 H3/K	WPW/R 60 H4/K	WPW/R 150 H4/K	
Max capacity	60kg	150kg	60kg	150kg	
Readability	20g	50g	20g	50g	
Tare range	-60kg	-150kg	-60kg	-150kg	
Pan size	410 × 4	410mm	500 × 500mm		
Work temperature	- 10°C to +40°C				
Interfaces		RS 232,	RS 485		
Ingress protection rating		IP 6	6/67		
Power supply	85-265V AC 50Hz and internal accumulator 6V				
Battery operation time	Up to 9h				
Display		LCD with	backlight		

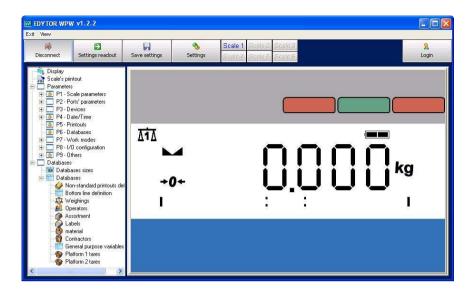
Scale type:	WPW/R 150 H5/K	WPW/R 300 H5/K	WPW/R 60 H5/K	WPW/R 150 H6/K	WPW/R 300 H6/K
Max capacity	150kg	300kg	60kg	150kg	300kg
Readability	50g	100g	20g	50g	100g
Tare range	-150kg	-300kg	-60kg	-150kg	-300kg
Pan size	6	600 × 600mn	า	800 × 800mm	
Work temperature	- 10°C to +40°C				
Interfaces		R	S 232, RS 48	35	
Ingress protection rating			IP 66/67		
Power supply	85-265V AC 50Hz and internal accumulator 6V				
Battery operation time	Up to 9h				
Display		LC	D with backli	ght	

32. APPENDIX

32.1. Communication with barcode scanners

- For communication with barcode scanners RADWAG scales use RS232 interfaces and simplex transmission (one direction) without handshaking. Only two wires are required for assuring such a transmission. Used scanners should be equipped in such interface with disabled both hardware and software handshaking.
- Both scales and scanners have the possibility of setting of transmission parameters. Both devices are required to have the same parameters set: baud rate, number of data bits, parity control, stop bits. e.g. 9600,8,N,1 – baud rate 9600 bit/s, data 8-bits, no parity control, 1 stop bit.
- Barcode scanners can send additional information apart from the expected barcode e.g. symbology (type of barcode). It is advisable to disable such information because RADWAG devices and software do not use it.
- 4. Some RADWAG systems can omit unnecessary information by using parameters that mark the beginning and the length of the code required to analyse.

- A special protocol is required in order the code be received by RADWAG equipment. It is required to program an appropriate prefix and suffix. Prefix – one byte 01 hexadecimally, suffix one byte 0D hexadecimally.
- 6. Most barcode scanners allow to enable/disable different symbologies (barcode types).
- 7. Programming of scanners is usually performed by reading special barcodes or by using an external software tool.
- 8. Scanners marketed together with RADWAG systems are always configured according to the rules above.

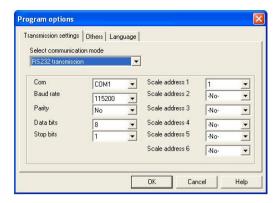

Barcode with required prefix and suffix in hexadecimal format	Barcode without required –fixes in ASCII format	Code type
01 30 30 32 31 30 31 32 36 0D	00210126	EAN-8
01 30 31 32 33 34 35 36 37 38 39 0D	0123456789	2 of 5
01 43 4F 44 45 20 33 39 20 54 45 53 54 0D	CODE 39 TEST	CODE 39
01 31 31 30 31 32 33 34 35 36 37 38 39 31 0D	1101234567891	EAN-13
01 43 6F 64 65 20 31 32 38 20 54 65 73 74 0D	CODE 128 Test	CODE 128

32.2. Cooperation with "EDYTOR WPW" - PC software tool

Standard WPW scales can be supervised by the accompanied program **EDYTOR WPW**, that can work as an additional display on the monitor and:,

- Edit and change user parameters (filters, date/time, backlight, configuring I/O, port parameters etc.),
- · Create, upload, edit, download databases,
- Receive and save printouts in text files,
- · Define the bottom line,
- Define non-standard printouts.

32.2.1. Main window


Caution:

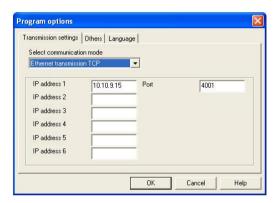
The installation file of **EDYTOR WPW** is accessible on RADWAG website **www.radwag.com**. In Products /Measuring indicators / PUE C41H.

32.2.2. Setting parameters of RS232

On order to establish the connection with **EDYTOR WPW** through RS232 interface follow the remarks below:

- Run EDYTOR WPW,
- Connect the scale to a computer using cable PT0020 (see ch. 25),
- Set the port for communication with a computer parameter
 <P3.1.1 COMP. PORT> set to RS232 (1)
 (see ch. 15.1.1),
- · Set transmission parameters:
 - submenu <P2.2 RS232 (1)> (see ch. 14.1.3),
- Click on the button "Settings" to show the window below:

- In the overlap <Transmission settings>:
 - Set the communication mode as "RS232 transmission",
 - Select an appropriate com number,
 - Configure the selected port (baud rate, parity, data bits, stop bits),
- Confirm the changes by clicking
- · Rerun the program,
- Press the "Connect" button,
- The appropriate communication with scales is signalled by pictogram in the left part of the display,
- Transmission problems are signalled by the message window:



32.2.3. Setting Ethernet parameters

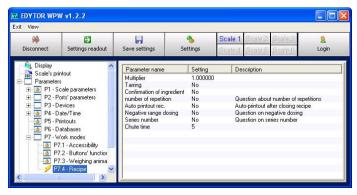
On order to establish the connection with **EDYTOR WPW** through Ethernet interface follow the remarks below:

- Power up the scale and run the EDYTOR WPW program,
- Connect the scale to a computer/switch using a PT0017 or PT0014 cable (depending on the Ethernet module on board – see ch. 27.1.2),
- Set the port for communication with a computer parameter
 P3.1.1 COMP. PORT> set to Ethernet (see ch. 15.1.1),

- Set parameters from the <P2.4 ETHERNET> group (see ch. 14.2):
 - Parameter <P2.4.1 WORK MODE> should be set to SERVER,
 - Parameters <P2.4.2 IP ADDRESS>, <P2.4.3 SUBNET MASK>,
 <P2.4.4 GATEWAY> should be set according to the network supervisor directions,
 - <P2.4.5 LOCAL PORT> set the same as in the computer program (in networks some ports can be taken),
 - Parameter <P2.4.8 TIMEOUT> set to 0 in order to prevent breaking connection.
- Press the "Settings" button:

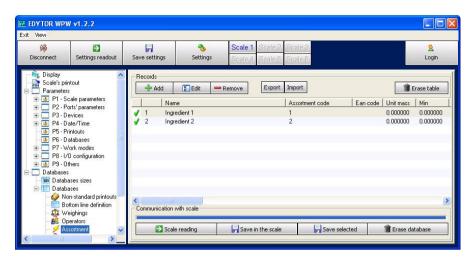
- In the overlap <Transmission setting>:
 - Set the communication type "Ethernet Transmission TCP",
 - "IP address 1" the same as <P2.4.2 IP ADDRESS> in the scale,
 - "Port"/"Com" the same as <P2.4.5 LOCAL PORT> in the scale,
- Confirm the changes by clicking OK
- Rerun the program,
- Press the "Connect" button,
- The appropriate communication with scales is signalled by pictogram in the left part of the display,
- Transmission problems are signalled by the message window:

32.3. An example application for dosing recipes

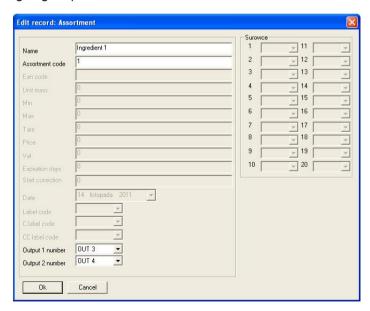

A WPW scale is intended to perform dosing recipes with controlling to speeds of dosing (two thresholds). A silo is the scale pan. The speed of dosing is determined by the rotation speed if the motor coupled with a perpetual screw (worm). The motor is controlled by an inverter which is equipped in two digital inputs (TTL standard), which are connected to the PUE C41 terminal outputs. Every ingredient has a separate dosing section (outputs, inverter, motor). There is also a control desk connected to the system with buttons: START, EMERGENCY STOP.

Procedure:

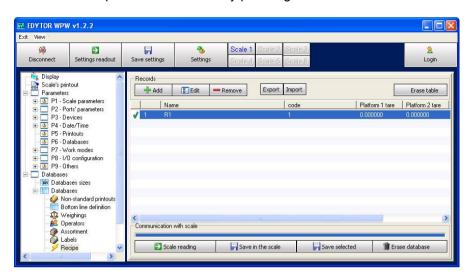
- 1. Connect the scale to the **EDYTOR WPW** computer tool (see ch. 32.2),
- Configure external buttons path: Parameters / I/O / Configuration / External Buttons:

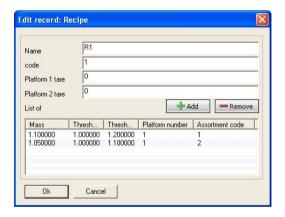


Configure the dosing procedure - path: Parameters / Work Modes / Recipe:

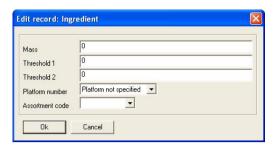


4. Open the assortment database – path: Databases/Bases/Assortment.


Pressing _______ causes uploading the database from the terminal:


5. Then press — Add — One record from the assortment database can be added in the window below. The most important thing is assigning outputs to thresholds:

6. Open the database of recipes – path: Databases/Bases/Recipes and then upload the database by pressing scale reading:


7. Press 4 Add to add a new recipe with all necessary parameters:

Caution:

The editing window allows to inscribe separate tare values for both platforms. These tare values are set after the dosing procedure starts before any output is on.

8. In order to add / edit an ingredient press

Caution:

It is advisable that if external automatic systems controlled by PUE C41 terminal outputs are used (see point 5) the text boxes above have following interpretation. **Threshold1** is the limit of the bulk dosing and **Mass** (nominal) is the limit of the precise dosing. **Threshold2** is a warning limit over which the dosing procedure is stopped and the next ingredient does not start. The dosing procedure cab be continued after the stable result lower or greater than **Mass** and greater than **Threshold1** is measured.

- 9. After entering all the required changes save them by pressing
- 10. All changes in parameters needs to be saved in the scale by pressing save settings.
- 11. Press on the terminal to select a recipe you want to process.
- 12. Press **START** on the control desk or on the terminal keypad to start the dossing process.
- 13. The program performs tarring.
- 14. The bulk dosing of the first ingredient is started, both outputs prescribed to the ingredient are on. When the mass indication reaches values over *Threshold1* one of outputs is switched off that causes decreasing the rotation speed of the motor and dosing is slower. This method of dosing is more precise and effective than the single threshold method of dosing an ingredient with constant speed.
- 15. Threshold values are declared in recipes. Equivalent rotation speeds are declared in inverters.

Caution:

"RADWAG"

DATE:

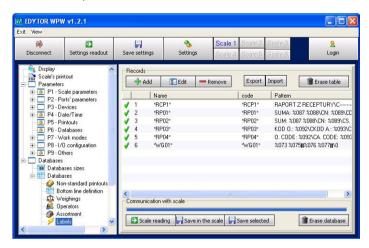
The inverter(s) used in this example should have the possibility of declaring at least two rotation speeds depending on the inputs' states.

- After applying the first ingredient software starts dosing the next ingredient according to the method described above using the next section (outputs, motor, inverter).
- 17. The procedure repeats until the last ingredient is applied.
- 18. The process of dosing can be stopped any time, especially in emergency situations, by using the **EMERGENCY STOP** button.
- 19. After the whole recipe is applied another output (declared in parameters) is on and chute is performed. It is possible to set an additional input (see inputs' declaration parameters) that will receive the signal of chute permition for the recipe.
- 20. When the chute process is performed software controls the mass and if it reaches a value lower than the one set in -LO-parameter software starts counting down the time declared in <P7.4.5. CHUTE TIME> before the chute is closed.
- 21. After the mixture is poured down the program is ready to start the next dosing process.

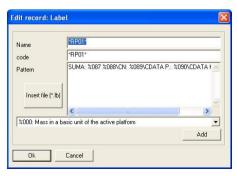
32.4. Example of designing non-standard printouts

TIME: MASS:	
SIGNATURE:	
After entering the non-standard printouts edition (see ch. 17.5.) we det the printout:	sign

"RADWAG"\C\TDATE:%002\C\TTIME:%003\C\T MASS:%000\C\C\T\TSIGNATURE:.........\C\0


32.5. Example of creating a complex report

Let us assume that a user wants to designe a complex report including weighings for subsequent products. The user wants to include the company name (header) and simple statistics for weighings of subsequent products as the number and sum of weighings (footer).


Procedure of designing the report pattern:

- Run program EDYTOR WPW and initiate communication with the scale according to ch. 32.2 of this manual,
- 2. Open database "labels" at: Databases/Databases/Labels. Press

 Scale reading to upload data from the scale:

 Edit one of the existing report patterns (*RP01*, *RP02*, *RP03* or *RP04*):

4. Enter the new report pattern:

RADWAG WAGI ELEKTRONICZNE

Product: %129

Weighings:

%130%089. %073 %075 %076 %077

%130------Number of weighings: %089 Sum of weighings: %087

\0

Description of applied variables:

RADWAG WAGI ELEKTRONICZNE – company name (header)

%129 - The name of present record for the complex report

%130 - Marking the line for beginning printing weighings in the complex report. (variable have to be placed twice to create the beginning and the end of the loop for printing weighings and separates weighings from other report parts)

%073 - Net mass of a weighing from the database

%075 - Weighing unit for printing weighings from the database

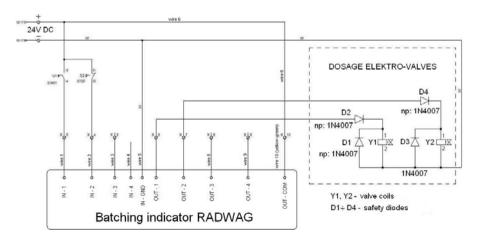
%076 - Dates of weighings for printing weighings from the database

%077 - Times of weighings for printing weighings from the database

%089 - Number of weighings (footer)

%087 - Sum of weighins (footer)

\0 - Termination of the report (necessary)


How to print the report:

- Enter the report edition according to ch. 19.1 of this manual,
- According to ch. 19.2 of this manual:
 - Set the product code filter to <NON-ZERO>,
 - Go to <PRINT REPORT> and choose the report pattern you have modified,
 - Press and then the report is being printed on the connected printer:

```
RADWAG WAGI ELEKTRONICZNE
Assortment: Gammos
Weighing
1.
2.
3.
              kg 2009-05-22
kg 2009-05-22
kg 2009-05-22
      0.190 \\ 0.190
                                   7:49:47
                                   7:49:48
      0.190 \\ 0.190
                                   7:49:48
4.
5.
6.
                  2009-05-22
                                   7:49:49
              kg
              kġ
                  2009-05-22
      0.190
                                   7:49:49
      0.190
                  2009-05-22
2009-05-22
                                   7:49:50
              kġ
7.
8.
      0.190
              kĝ
                                   7:49:50
                                  12:50:38
8:20:14
                  2009-05-22
      0.000
              kg
      0.000
              kg
                  2009-05-27
     0.000 kg 2009-05-27
0.000 kg 2009-05-27
10.
                                   8:26:27
11.
                                   8:27:07
Number of weighings: 11
Sum of weighings:
RADWAG WAGI ELEKTRONICZNE
Assortment: Bacon
Weighing
     1.501
1.501
1.501
                  2009-05-22
2009-05-22
2009-05-22
                                  11:13:45
11:13:45
              kg
              kg
3.
                                  11:13:46
              kg
      1.501
                  2009-05-22
4.
5.
              kg
                                  11:13:46
      1.501
1.501
              kġ
                  2009-05-22
                                  11:13:47
6.
              kġ
                  2009-05-22
2009-05-22
                                  11:13:47
        501
              kg
                                  11:13:48
              kg 2009-05-22
8.
      1.501
                                  11:13:49
Number of weighings:
Sum of weighings:
                              12.008
```

32.6. Examples of surge protections

 Connection diagram of dosing indicators outputs with protection for DC:

• Connection diagram of dosing indicators outputs with protection for AC:

MANUFACTURER

OF ELECTRONIC WEIGHING INSTRUMENTS

PRODUCENT WAG ELEKTRONICZNYCH "RADWAG" 26 – 600 Radom, Bracka 28 Street POLAND

Phone +48 48 38 48 800, phone/fax. + 48 48 385 00 10 Selling Department + 48 48 366 80 06 www.radwag.com

