# **User Manual**

# Weighing Module MW-04

User manual no.: ITKU-83-01-03-13-A





# **BALANCES AND SCALES**

RADWAG 26 – 600 Radom, Bracka 28, POLAND Phone: +48 (0-48) 38 48 800, fax. +48 (0-48) 385 00 10 export@radwag.com www.radwag.com

# **MARCH 2013**

# TABLE OF CONTENTS

| 1. | INTENDED USE                                   | 5   |
|----|------------------------------------------------|-----|
| 2. | PRECAUTIONARY MEASURES                         | 5   |
| 3. | WARRANTY CONDITIONS                            | 5   |
| 4. | TECHNICAL DATA                                 | 6   |
|    | 4.1. INPUT/OUTPUT parameters                   | 7   |
| 5. | CONSTRUCTION                                   | 7   |
|    | 5.1. View                                      | 8   |
|    | 5.2. Dimensions                                | 9   |
|    | 5.3. Description of sockets and slots          | .10 |
|    | 5.4. Diagrams of connecting cables             | .11 |
| 6. | 4IN/4OUT MODULE                                | .13 |
|    | 6.1. IN/OUT diagram                            | .13 |
|    | 6.2. Description on IN/OUT cables              | .13 |
| 7. | INSTALLATION of "MwMANAGER" software           | .14 |
|    | 7.1. Minimum hardware requirements             | .14 |
|    | 7.2. Installation procedure                    | .15 |
| 8. | PC PROGRAM DESCRIPTION                         | 18  |
|    | 8.1. Weighing window                           | 18  |
|    | 8.2. Application settings                      | .19 |
|    | 8.2.1. Connection settings                     | 19  |
|    | 8.2.2. Language                                | 22  |
|    | 8.2.3. Other                                   | 23  |
|    | 8.3. Parameters                                | 24  |
|    | 8.3.1. User Parameters                         | .24 |
|    | 8.3.2. Communication settings                  | 25  |
|    | 8.3.3. IN / OUT functions                      | 28  |
|    | 8.3.4. Previewing available weighing platforms | 30  |
|    | 8.3.5. Previewing accessible A/D converters    | 31  |
|    | 8.4. Functions                                 | 32  |
|    | 8.4.1. Dosing                                  | 32  |
|    | 8.4.2. Checkweighing                           | 36  |
|    | 8.4.3. Input/output status                     | 37  |
| 9. | WEIGHING                                       | 38  |
|    | 9.1. Principles of use                         | .38 |
|    | 9.2. Zeroing                                   | 39  |
|    | 9.3. Tarring                                   | 40  |
|    | 9.4. Weighing on dual range scales             | 40  |
|    | 9.5. Toggling between weighing units           | 41  |
| 10 | ). SCALE PARAMETERS                            | 42  |
|    | 10.1. Autozero function                        | 42  |
|    | 10.2. Median filter                            | 43  |
|    | 10.3. Filter                                   | 43  |
| 11 | . CHECKWEIGHING                                | 44  |
|    | 11.1. LO threshold                             | .44 |
|    | 11.2. MIN/MAX threshold                        | 45  |
| 12 | DOSING                                         | 45  |

| 13. PARAMETERS IN FILE                                                                     | .46 |
|--------------------------------------------------------------------------------------------|-----|
| 13.1. Saving to file                                                                       | .47 |
| 13.2. Uploading file data                                                                  | .49 |
| 14. OFFLINE MODE                                                                           | .50 |
| 15. ERROR MESSAGES                                                                         | .52 |
| 16. COMMUNICATION PROTOCOL                                                                 | .53 |
| 16.1. General information                                                                  | .53 |
| 16.2. A set of commands recognized by the module                                           | .53 |
| 16.3. Response message format                                                              | .54 |
| 16.4. Description of commands                                                              | .55 |
| 16.4.1. Zero scale                                                                         | .55 |
| 16.4.2. Tare scale                                                                         | .55 |
| 16.4.3. Give tare value                                                                    | .55 |
| 16.4.4. Set tare                                                                           | .56 |
| 16.4.5. Send stable result in basic weighing unit of an active weighing platform           | .56 |
| 16.4.6. Immediately send the result in basic weighing unit of an active weighing platform  | 157 |
| 16.4.7. Immediately send the result in basic weighing unit of a <i>n</i> weighing platform | .58 |
| 16.4.8. Immediately send the result from all weighing platforms in basic weighing units    | .58 |
| 16.4.9. Send the stable result in current weighing unit                                    | .59 |
| 16.4.10. Immediately send the result in current weighing unit                              | .60 |
| 16.4.11. Switch on continuous transmission in basic weighing unit                          | .60 |
| 16.4.12. Switch off continuous transmission in basic weighing unit                         | .61 |
| 16.4.13. Switch on continuous transmission in current weighing unit                        | .61 |
| 16.4.14. Switch off continuous transmission in current weighing unit                       | .61 |
| 16.4.15. Set low checkweigning threshold.                                                  | .62 |
| 16.4.16. Set nigh checkweigning threshold                                                  | .62 |
| 16.4.17. Give value of low checkweigning limit                                             | .62 |
| 16.4.18. Give value of high checkweigning limit                                            | .62 |
| 16.4.19. Change platform n                                                                 | .63 |
|                                                                                            | .03 |
| 17. COMUNICATION MODULE PROFIDUS                                                           | .04 |
| 17.1. General Information                                                                  | .04 |
| 17.2. Setting instrument's address in a Prolibus network                                   | .04 |
| 17.3. Memory map                                                                           | .00 |
| 17.3.1. Output address                                                                     | .00 |
| 17.5.2. Iliput duuless                                                                     | .00 |
| 17.4. Description of valiables                                                             | .07 |
| 17.4.1. Output variables                                                                   | .07 |
| 17.4.2. Input variables                                                                    | .70 |

# 1. INTENDED USE

Weighing module **MW-04** series is intended to design industrial load cell scales. Depending on application, communication with the weighing module can be carried out through the following interfaces: RS232, RS485, Ethernet and Profibus. The MW-04 is designed for cooperation with terminals PUE 5 or PC computers.

Operating of the weighing module MW-04 from a PC level is carried out with a computer software "**MwManager**". A detailed description of the application is included in the further section of the weighing module user manual.

# 2. PRECAUTIONARY MEASURES

- A. Before putting into use read carefully this user manual. Use the device as intended;
- B. Weighed loads should be placed possibly in the central section of the weighing platform;
- C. The weighing platform should be loaded with objects which gross weight does not exceed the maximum capacity;
- D. Do not leave heavy loads on the weighing platform for longer period of time;
- E. In case of failure, immediately unplug the device from power supply;
- F. Devices that are to be decommissioned should be decommissioned according to valid legal regulations;

# **3. WARRANTY CONDITIONS**

- A. RADWAG is obliged to repair or change those elements that appear to be faulty by production or construction reason,
- B. Defining defects of unclear origin and outlining methods of their elimination can be carried out only in participation of the user and the manufacturer representatives,
- C. RADWAG does not take any responsibility connected with defects or loss deriving from unauthorized or inappropriate (not adequate to manuals) production or service processes,

- D. Warranty does not cover:
  - Mechanical failures caused by inappropriate exploitation of the device or failures of thermal or chemical origin or,
  - Defects caused by atmospheric discharge, overvoltage in mains or other random event,
  - Maintenance activities (cleaning of the weighing module).
- E. Warranty loss appears if:
  - A repair is carried out by an unauthorized service,
  - Intrusion into mechanical or electronic construction of unauthorized personnel,
  - Removing or destroying protection stickers for the weighing module.
- F. The detailed warranty conditions are listed in the warranty certificate.

| MODEL                                           | MW-04-1            | MW-04-2         | MW-04-3           |
|-------------------------------------------------|--------------------|-----------------|-------------------|
| Number of platforms in standard                 | 2                  |                 |                   |
| Max number of platforms                         |                    | 4               |                   |
| Interface                                       | RS232,<br>Ethernet | RS232,<br>RS485 | RS232<br>PROFIBUS |
| 4IN/4OUT module                                 | YES                | YES             | NO                |
| Housing                                         |                    | Aluminum        |                   |
| IP rating                                       |                    | IP65            |                   |
| Power supply                                    | 100 -              | ÷240VAC 50 ÷6   | 60Hz              |
| Power consumption                               | 25W                |                 |                   |
| Working temperature                             |                    | -10°C ÷ 40°C    |                   |
| Maximum quantity of divisions<br>from converter | 8388608            |                 |                   |
| OIML class                                      |                    |                 |                   |
| Number of verification intervals                |                    | 6000            |                   |
| Maximum signal increase                         |                    | 19,5mV          |                   |
| Maximum voltage per verification interval       |                    | 3,25uV          |                   |
| Minimum voltage per verification interval       |                    | 0,4uV           |                   |

# 4. TECHNICAL DATA

| Minimum load cell impedance  | 80           |
|------------------------------|--------------|
| Maximum load cell impedance  | 1200         |
| Load cell excitation voltage | 5V           |
| Load cell connectivity       | 4 or 6 wires |

\*) – interface Profibus DP is assembled interchangeably with the module 4IN/4OUT (both modules are not assembled at the same time).

## Accessories:

Additional weighing platform module: DP-4

# 4.1. INPUT/OUTPUT parameters

The module features 4 optoisolated inputs, and 4 outputs type OptoMOS.

| Output parameters          |         |
|----------------------------|---------|
| No. of outputs             | 4       |
| Outputs type               | OptoMOS |
| Maximum switchable current | 0,2A DC |
| Maximum conducted voltage  | 50V DC  |

| Inputs parameters     |              |
|-----------------------|--------------|
| No. of inputs         | 4            |
| Inputs type           | optoisolated |
| Control voltage range | 5 -24V DC    |

# **5. CONSTRUCTION**

The weighing module MW-04 series comprises a metal housing. The signal cables are assembled on glands. MW-04 communicates with peripheral devices through one of the available interfaces: RS485, RS232, Ethernet, Profibus.

The weighing module enables cooperating with a terminal PUE 5 series or a PC computer. It features 4 optoisolated inputs and 4 outputs type OptoMOS. The MW-04 is supplied from mains 100-240VAC.



#### 5.1. View



# 5.2. Dimensions



Fig. 2 Dimensions MW-04

#### 5.3. Description of sockets and slots

Weighing module MW-04 series features interfaces sockets located at the main board. All cables are assembled in the housing using glands.



Fig.3 Schedule and description of sockets on the main board of the weighing module MW-04 series

- 1- Gland PG11 of weighing platform 1
- 2- Gland PG11 of weighing platform 2
- 3- Gland PG11 of weighing platform 3
- 4- Gland PG11 of weighing platform 4
- 5- Socket M12 8P for RS232
- 6- Gland M16 for Ethernet cable, RS485 or PROFIBUS (depending on module version)
- 7- Gland M16 for 4IN cable
- 8- Gland M12 for feeder cable 230VAC
- 9- Gland M16 for 4OUT cable

#### Description of RS 232 socket:

| RS232 | Pin2 – RxD<br>Pin3 – TxD<br>Pin5 – GND |  |
|-------|----------------------------------------|--|
|-------|----------------------------------------|--|

#### 5.4. Diagrams of connecting cables

#### Cable: RS232 - DB9/F



#### Cable: RS485



Fig. 5 Cable PT0012

#### **Cable: Ethernet**



Fig. 6 Cable PT0224

#### Cable: IN/OUT





#### **Cable: PROFIBUS**



Fig. 8 Cable no. PT0225

# 6.4IN/4OUT MODULE

The 4IN/4OUT module is assembled on the main board of the weighing module MW-04 series. The in and out signal cables are assembled using glands.

## 6.1. IN/OUT diagram



#### 6.2. Description on IN/OUT cables

The signals are available on two cables, one for inputs and the other for outputs. Below table demonstrates distribution of signals on each wire of the cable.

| CABLE for INPUTS |        | CABLE for OUTPUTS |        |
|------------------|--------|-------------------|--------|
| WIRE no.         | SIGNAL | WIRE no.          | SIGNAL |
| 1                | IN1    | 1                 | OUT1   |
| 2                | IN 2   | 2                 | OUT2   |
| 3                | IN3    | 3                 | OUT3   |
| 4                | IN4    | 4                 | OUT4   |
| 5                | COM    | 5                 | COM    |
| 6                | +12V   | 6                 | +12V   |
| 7                | GND    | 7                 | GND    |

Signals +12VDC and GND are connected to the feeder of the weighing module MW-04.

# 7. INSTALLATION of "MwMANAGER" software

## Caution:

- In order to install the program on the computer with an older version of the "MwManager" software, first uninstall the previous software version.
- The installation manual was made for Windows XP and it is compatible with former versions of MS Windows.

Proper operation of the software requires installing Microsoft .NET Framework ver. 2.0 or higher. It is accessible on Microsoft website.

- Proper operation of the program requires installing all accessible ServicePacks for your operating system, that are supplied by Microsoft.
- Due to continuous software updates there may occur some discrepancies between the instruction and the program.
- **RADWAG** company takes no responsibility for the consequences of the software operation, and any errors resulting from the incorrect software operation.
- **RADWAG** company takes no responsibility for loss or protection of any data caused by the incorrect use of the software or computer.

# 7.1. Minimum hardware requirements

Correct software operation requires a computer with below specified configuration:

- A PC computer with installed OS MS Windows 2000/XP/2003/Vista/7,
- processor 2.4 GHz or faster,
- RAM 512 MB or more (recommended 1 GB),
- At least 1 GB of free space on the hard drive,
- Display with minimum resolution 800 x 600 pixels,
- DVD drive.

#### 7.2. Installation procedure

 When having the software installation version, run it with MwManager x.x.x.x.exe file. Select one of software language version and press OK button.



2. Press "Next" in the welcoming window.



3. Window for specifying installation directory:

| 🕺 Setup - MwManager                                                                                                                             |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Select Destination Location<br>Where should MwManager be installed?                                                                             | 0.     |
| Setup will install MwManager into the following folder.<br>To continue, click Next. If you would like to select a different folder, click Brows | e,     |
| C:\Program Files\Radwag\MwManager Brow                                                                                                          | se     |
| At least 93,8 MB of free disk space is required.                                                                                                |        |
| <back next=""></back>                                                                                                                           | Cancel |

Use the window to specify software location on the computer (default: do not change the path), and press **"Next"** button.

4. Window for selecting tasks:

| 🧟 Setup - MwManager                                                                                 |          |
|-----------------------------------------------------------------------------------------------------|----------|
| Select Additional Tasks<br>Which additional tasks should be performed?                              | 0.       |
| Select the additional tasks you would like Setup to perform while installing Mw<br>then click Next. | Manager, |
| Additional icons:                                                                                   |          |
| Create a desktop icon                                                                               |          |
| < Back Next >                                                                                       | Cancel   |

Mark / unmark options and press "Next" button.

5. Window on readiness to carry out installation process:

| 🕵 Setup - MwManager                                                                                             |          |
|-----------------------------------------------------------------------------------------------------------------|----------|
| Ready to Install<br>Setup is now ready to begin installing MwManager on your computer.                          | 0.       |
| Click Install to continue with the installation, or click Back if you want to review or<br>change any settings. |          |
| Destination location:<br>C:\Program Files\Radwag\MwManager                                                      | <u>~</u> |
| Start Menu Folder:<br>MwManager                                                                                 |          |
| Additional icons:<br>Create a desktop icon                                                                      |          |
| K                                                                                                               | ×        |
| < Back Install                                                                                                  | Cancel   |

To continue press "Install" button.

6. Window on completion of software installation process:



Successfully installed application should be closed by pressing "Close" button.

7. A shortcut will be created on computer's desktop.



# 8. PC PROGRAM DESCRIPTION

Operation of the weighing module from PC computer level requires application "**MwManager**". The application can operate in MS Windows environment with installed add-on **.NET framework 2.0**.

The software enables reading mass value, tarring, zeroing, filter setting, simulating operation of inputs and dosing function for an individual weighing platform. Setting a function, inputs and outputs is enabled for an individual weighing platform.

#### Caution:

- 1. This manual complies with the software "**MwManager**" starting from version **1.0.3.1** and software of the weighing module MW-04 series from version **1.1**
- 2. The entered values are accepted by pressing **Enter** button. The changes are saved in the weighing module on pressing **Save** button. All temporary parameters settings that are not saved in the weighing module are highlighted in red.
- 3. The look of some windows of software "**MWManeger**" depends on the number of operated A/D converters, connected weighing platforms and their configuration in the weighing module MW-04 series.

#### 8.1. Weighing window



Fig. 9 View of the software's weighing window

On completing initialization procedure, the weighing window displays below pictograms:



# **Function buttons:**

| •               | - | Zeroing                                                                                                 |
|-----------------|---|---------------------------------------------------------------------------------------------------------|
| <b>F</b>        | - | Tarring                                                                                                 |
| >>1<<<br>2<br>3 | - | Weighing platform selection, enabled in case the MW-04 cooperates with more than one weighing platform. |

## Caution:

Zeroing and tarring functions are enabled for an active weighing platform.

# 8.2. Application settings

The Application Settings tab comprises the settings for connecting with the weighing module, choosing interface language version and other software options.

# 8.2.1. Connection settings



The Application Settings tab, connection Settings button enables a function for establishing connection with the weighing module.

| Application Settings  | Connection Settings                                                                                       |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Connection Settings   | MW01 MW-04                                                                                                |  |  |
| Language              | Connection settings Connection method: RS 232                                                             |  |  |
| RS-232 port settings: |                                                                                                           |  |  |
|                       | Port     Baud rate     Parity     Data bits     Stop bits       COM1     S7600     None     8     1     1 |  |  |
|                       |                                                                                                           |  |  |
|                       | Exit Connect                                                                                              |  |  |

Fig. 10 Connection settings window

In order to establish a connection with the weighing module MW-04, go to tab

"Select device" and mark



option.

# **Description:**

| Select device | Device you want to connect to:                                                                                   |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| MW01          | Weighing module MW-01 series                                                                                     |  |  |  |
| MW-04         | Weighing module MW-04 series<br>Mark in case of establishing connection with the weighing module<br>MW-04 series |  |  |  |

| Means of<br>connection | Interface for connecting to the weighing module                                                         |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| RS 232                 | Connection via RS232 socket                                                                             |  |  |
| TCP/IP                 | Ethernet connection                                                                                     |  |  |
| RS 485                 | Connection via RS 485 network                                                                           |  |  |
| Offline                | The offline mode is used for saving and editing all indispensable parameters of the configuration file. |  |  |

#### RS232:

| Port      | Choosing a COM port number to which the weighing module is plugged |  |  |
|-----------|--------------------------------------------------------------------|--|--|
| Baud rate | Baud rate for the RS232 interface. 57600 bps by default            |  |  |
| Parity    | Parity bit parameter. "None" by default (non-editable value)       |  |  |
| Data bits | Number of data bits. 8 by default (non-editable value)             |  |  |
| Stop bits | Number of stop bits. 1 by default (non-editable value)             |  |  |

## TCP/IP:

| IP address | IP address of the device, default setting 192.168.0.2 |  |
|------------|-------------------------------------------------------|--|
| Port       | Port set in the weight module, default setting 4001   |  |

#### RS485:

| Port      | Choosing a COM port number to which the weighing module is plugged |  |  |
|-----------|--------------------------------------------------------------------|--|--|
| Baud rate | Baud rate for the RS232 interface. 57600 bps by default            |  |  |
| Parity    | Parity bit parameter. "None" by default (non-editable value)       |  |  |
| Data bits | Number of data bits. 8 by default (non-editable value)             |  |  |
| Stop bits | Number of stop bits. 1 by default (non-editable value)             |  |  |
| Address   | Weighing module address in network                                 |  |  |

#### Caution:

- 1. The default baud rate of RS232 and RS485 interfaces in the **MW-04** is set to **57600** bps by default.
- 2. If case of problems with establishing a connection to the weighing module via interfaces RS232, RS485, set and check accessible baud rates or connect through Ethernet interface.

#### **Description of buttons:**

**Connect** Establishing a connection with the weighing module. After connecting, the button changes its function to "Disconnect" and colour of the button changes to green.

**Disconnect** Terminating communication with the module. In case of terminating communication with the module, the button changes its function to "Connect" and its colour changes to red.

#### 8.2.2. Language



Use Application Settings tab, and Language button to open a window enabling changing the language of the software.

| O Application Settings | Language selection  |       |
|------------------------|---------------------|-------|
|                        | Available languages |       |
| Connection Settings    |                     | >     |
| <b></b>                | English Polski      |       |
| Other                  |                     |       |
| 🗢 Parameters 💽         |                     |       |
| \min Features 💌        | •                   |       |
|                        |                     |       |
|                        |                     |       |
|                        |                     |       |
|                        |                     |       |
|                        |                     |       |
|                        |                     |       |
|                        |                     |       |
|                        |                     | Apply |

Fig. 11 Software language version selection window

On selecting the language version, press "**Apply**" button to save the changes. Present software version provides access to the following language versions:

- English
- Polish



## 8.2.3. Other



Use Application Settings tab, Other button to start other software options.



Fig. 12 Other options window

Mark "**autostart**" option, and after switching on the software automatically establishes connection to the weighing module, using default or last used means of connection.

Mark "Enable touch screen interface" option to adapt the look of software "**MwManager**" to operation on weighing terminal PUE5 series and enabling operation of the touch screen display.

#### 8.3. Parameters

Tab **Parameters** comprises all user parameters, communication parameters of the weighing module and functions of inputs / outputs.

## 8.3.1. User Parameters



Tab **Parameters**, User parameters button enables opening a window with user parameters of the weighing module. The displayed parameters are visible for an enabled (active) weighing platform and they are editable for each software user.

| Application Settings 💌 | User parameters |                |              |
|------------------------|-----------------|----------------|--------------|
| Parameters             | Autozeroing     | Yes            |              |
|                        | Веер            | Yes            |              |
| User parameters        | Median filter   | 0,5 💉 [s]      |              |
| Set Communication      | Filter          | Very Fast      |              |
| <b>*</b>               | Current unit    | Change         |              |
| Functions of I / O     |                 |                |              |
| 8                      |                 |                |              |
| 4                      |                 |                |              |
| 8                      |                 |                |              |
| ADC                    |                 |                |              |
| 🖭 Features 💌           |                 |                |              |
|                        |                 |                |              |
|                        |                 |                |              |
|                        | 🔁 Refresh       | Read from file | Save to file |

Fig.13 User parameters window

#### List of user parameters:

| Auto-zeroing  | - | YES / NO - enabling / disabling auto-zeroing function                                |  |
|---------------|---|--------------------------------------------------------------------------------------|--|
| Веер          | - | Beep sound (not operated by the weighing module MW-04)                               |  |
| Median filter | - | Setting the value of median filter.<br>None – means disabling the median filter      |  |
| Filter        | - | Setting the speed of averaging filter operation<br>None – means disabling the filter |  |
| Current unit  | - | Toggling between weighing units in the weighing window                               |  |

## Caution:

In case the MW-04 operates a few weighing platforms, then the displayed parameters enable editing only the weighing platform currently previewed in the weighing window:

| >>1<< |
|-------|
| 2     |
| 3     |
| 4     |

# 8.3.2. Communication settings



Tab **Parameters**, set communication button opens a window with communication parameters of the weighing module. The parameters are previewed and accessible for editing for each software user who establishes communication with the weighing module.

## • Ethernet

| 🚱 Application Settings 💌 | Communication       |                |              |
|--------------------------|---------------------|----------------|--------------|
| 🗢 Parameters 💽           | Ethernet RS 232/485 |                |              |
| <b>X</b>                 | IP Address          | 192.168.0.2    |              |
| User parameters          | SubnetMask          | 255.255.255.0  |              |
| 0                        | Default Gateway     | 192.168.0.1    |              |
| Set Communication        | Port                | 4001           |              |
| <b>\$</b>                | Timeout             | 0 💌 [s]        |              |
| Functions of I / O       |                     |                |              |
| 2                        |                     |                |              |
| 4                        |                     |                |              |
| 2                        |                     |                |              |
| ADC                      |                     |                |              |
| \min Features 💌          |                     |                |              |
|                          |                     |                |              |
|                          |                     |                |              |
|                          | 🥏 Refresh 🔰         | Read from file | Save to file |

Fig.14 Communication parameters window for Ethernet

# Description of window fields:

| IP address   | - | Device's IP address, default 192.168.0.2                                                           |  |
|--------------|---|----------------------------------------------------------------------------------------------------|--|
| Subnet mask  | - | Ethernet subnet mask, default 255.255.255.0                                                        |  |
| Default gate | - | Ethernet default gate, default 192.168.0.1                                                         |  |
| Port         | - | TCP communication port, default 4001.                                                              |  |
| Timeout      | - | Inactivity time in which the device breaks communication, expressed in seconds, range 0 – 300 [s]. |  |

## • RS 232/485

| 🚱 Application Settings 💌 | Communication       |                |   |              |      |
|--------------------------|---------------------|----------------|---|--------------|------|
| 🗢 Parameters 💽           | Ethernet RS 232/485 |                |   |              |      |
| <b>X</b>                 | Module address      |                | 1 |              |      |
| User parameters          | Baud rate RS232     | 57600          | 3 |              |      |
| 0                        | Baud rate RS485     | 57600          | J |              |      |
| Set Communication        |                     |                |   |              |      |
| <b>\$</b>                |                     |                |   |              |      |
| Functions of I / O       |                     |                |   |              |      |
| \$                       |                     |                |   |              |      |
| 4                        |                     |                |   |              |      |
| *                        |                     |                |   |              |      |
| ADC                      |                     |                |   |              |      |
| 🗾 Features 💽             |                     |                |   |              |      |
|                          |                     |                |   |              |      |
|                          |                     |                |   |              |      |
|                          | 🥏 Refresh 📝         | Read from file | R | Save to file | Save |

Fig. 15 RS communication parameters window

#### Description of window fields:

| Module address     | - | Weighing module address in RS 485 network (the network requires setting different address for each of the devices), default set to <b>1</b> . Range from 1 to 254. |
|--------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baud rate<br>RS232 | - | Baud rate setting for RS 232 communication interface.<br>Default <b>57600</b> bit/s                                                                                |
| Baud rate<br>RS485 | - | Baud rate setting for RS 485 communication interface.<br>Default <b>57600</b> bit/s                                                                                |

On changing the communication parameters, save the settings and restart the weighing module (by unplugging and repeated plugging to mains) to make changes effective.

Remember, that the new parameters are inserted in the connection settings window with the weighing module. See chapter 8.2.1 of this user manual.

## 8.3.3. IN / OUT functions

The weighing module MW-04 series comprises four inputs and four outputs.

**9** 

Use tab **Parameters**, Functions of 1/0 button to open a window enabling software user to access configuring functions of the weighing module's inputs and outputs. Each input and output requires selecting number of a scale / weighing platform for which its function should be carried out.

| Application Settings 💌 | unctions of inputs      |           |
|------------------------|-------------------------|-----------|
| Parameters             | Input                   |           |
| 3                      | • 1 zeroing 🔍 1 🔍       |           |
| Licer narameters       | -0 2 [taring V 1 V      |           |
|                        | -O 3 start dosing       |           |
| <b>S</b>               | -O 4 Stop dosing V 1 V  |           |
| Set Communication      | Output                  |           |
| õ                      | ■ 1 stable              |           |
| Functions of I / O     | • 2 MIN 👻 2 👻           |           |
| 8                      | • 3 ОК 🛛 🖌              |           |
| 4                      | • 4 MAX · 2 ·           |           |
| 8                      |                         |           |
| ADC                    |                         |           |
| F Features             |                         |           |
|                        |                         |           |
|                        |                         |           |
|                        | CREfresh Read from file | file Save |

Fig. 16 Inputs / Outputs configuring window

# Inputs configuration

Functions accessible for inputs:

| None         | Input disabled                                    |
|--------------|---------------------------------------------------|
| Tarring      | Tarring of an individual platform                 |
| Zeroing      | Zeroing of an individual platform                 |
| Start dosing | Initiate dosing process on an individual platform |
| Stop dosing  | Stop dosing process on an individual platform     |

# Outputs configuration

Functions accessible for outputs:

| None       | Output disabled                                                                                      |
|------------|------------------------------------------------------------------------------------------------------|
| Stable     | Signaling stable weighing result over LO mass limit, on an individual platform                       |
| MIN stable | Signaling stable weighing result over LO mass limit but below MIN limit, on an individual platform   |
| MIN        | Signaling unstable weighing result over LO mass limit but below MIN limit, on an individual platform |
| OK stable  | Signaling stable weighing result between MIN and MAX limits, on an individual platform               |
| ок         | Signaling unstable weighing result between MIN and MAX limits, on an individual platform             |
| MAX stable | Signaling stable weighing result over MAX limit, on an individual platform                           |
| MAX        | Signaling unstable weighing result over MAX limit, on an individual platform                         |

#### Caution:

If a function is assigned to a specific output and the same output is used for bulk or fine dosing then on dosing start and continuation the outputs will be activated compatibly to the dosing parameters. End of the dosing process causes switching over the functions to outputs.

# 8.3.4. Previewing available weighing platforms

| 0 | -01 | 6 |  |
|---|-----|---|--|
| 1 | 20  | 1 |  |
| 1 | 1   | 2 |  |

Tab **Parameters**, 4 button opens a simultaneous view of weighing windows of all weighing platforms operated by the weighing module MW-04. Additionally, for information purposes, each weighing platform features data on number A/D converter divisions (or converters), adjustment factor and start mass.

## Caution:

Window look depends on number of used A/D converters, connected weighing platforms and their configuration.



Fig. 17 An example of a window for previewing four weighing platforms

## 8.3.5. Previewing accessible A/D converters



Tab **Parameters**, **ADC** button enables previewing divisions, adjustment factor, mass, correction factor and start mass of all available A/D converters.

#### Caution:

Window look depends on number of used A/D converters, connected weighing platforms and their configuration.

| Application Settings 💌 | ADC                                                     |                                |                          |                                |
|------------------------|---------------------------------------------------------|--------------------------------|--------------------------|--------------------------------|
| 🗢 Parameters 💽         | >>1<<                                                   | 2                              | 3                        | 4                              |
| No.                    | Converter error<br>28078                                | Converter error<br>47965       | Converter error<br>21538 | Converter error<br>97975       |
| User parameters        | Calibration factor<br>23835,33                          | Calibration factor<br>22774,67 | Calibration factor       | Calibration factor<br>23457,33 |
| Set Communication      | ADC 1<br>Converter error<br>Mass<br>Correction's factor | 28078<br>1.111<br>1            |                          |                                |
|                        | Start mass                                              | 140                            |                          |                                |
| ADC                    |                                                         |                                |                          |                                |
| Features 💌             |                                                         |                                |                          |                                |
|                        | 🥏 Refresh                                               | Read from file                 | Save to f                | le Save                        |

Fig. 18 Window for previewing divisions from A/D converters

## 8.4. Functions

Tab Features to set functions of dosing, checkweighing, inputs and outputs status and simulation.

#### 8.4.1. Dosing



Tab Features, Dosage button opens a window for settings dosing process parameters of a weighing platform that is active in the weighing window.

| Application Settings 💌 | Dosage                    |                |                      |        |
|------------------------|---------------------------|----------------|----------------------|--------|
| 🗢 Parameters 💽         | Bargraph                  |                |                      |        |
| Features               | Scale bargraph up to 120% | of feeded mass | -                    |        |
| Dosage                 | Dosing Parameters         |                | Status of dosing     |        |
| LO OK HI               | Threshold fast dosage     | Output No      | STOP                 |        |
| Checkweighing          | 2 [kg]                    | ✓1 2 3 4       | Simulation of inputs |        |
| -2                     | Threshold accurate dosing | Output No      | 🗾 zeroing            |        |
| I/O status             | 3 [kg]                    | 1 2 3 4        | taring               |        |
|                        |                           |                | 📫 start dosing       |        |
|                        | stop dosing               | start dosing   | 📫 stop dosing        |        |
|                        |                           |                |                      |        |
|                        |                           |                |                      |        |
|                        |                           |                |                      |        |
|                        |                           |                |                      |        |
|                        | 🤌 Reading  Read           | from file      | Save to file         | Saving |

Fig. 19 Window on dosing parameters

#### • Bargraph

The dosing window features a graphic bar visualizing mass indication within the weighing range of the weighing module.

Ticking the additional option extends bar graph scaling to 120 % of the maximum dosing limit. If the fine dosing threshold is disabled, then the bargraph is scaled according to the bulk dosing threshold.

| Output No   |
|-------------|
| ✓1 □2 □3 □4 |
| Output No   |
| 1 2 3 4     |
|             |

Fig. 20 Bargraph scaling for the bulk dosing limit

| Dosing Parameters         |                                             |
|---------------------------|---------------------------------------------|
| Threshold fast dosage     | Output No                                   |
| 50 [kg]                   | <b>□</b> 1 <b>□</b> 2 <b>□</b> 3 <b>□</b> 4 |
| Threshold accurate dosing | Output No                                   |
| 120 [kg]                  | 1 2 3 4                                     |

Fig. 21 Bargraph scaling for the bulk and fine dosing limits

| Bargraph                                |  |
|-----------------------------------------|--|
|                                         |  |
|                                         |  |
| Scale bargraph up to 120% of feeded mas |  |

Fig. 22 Bargraph for low mass without scaling

| Bargraph       |                       |           |          |
|----------------|-----------------------|-----------|----------|
|                |                       |           |          |
|                |                       |           | <b>.</b> |
| 🔽 Scale bargra | aph up to 120% of fee | eded mass |          |

Fig. 23 Bargraph for the same low mass with enabled scaling option

## • Dosing parameters

| Parametry dozowania       |           |  |
|---------------------------|-----------|--|
| Próg dozwania szybkiego   | Nrwyjścia |  |
| 90                        | ✓ 1 ✓ 2   |  |
| Próg dozowania dokładnego | Nrwyjścia |  |
| 120                       | 1 2 3 4   |  |

#### Fig. 24 Window for setting dosing parameters

The dosing process can consist of one or two phases depending on the needs.

#### **Description of fields:**

| Threshold fast dosage                                                                                                                                                           | Output No                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Mass value for which the first dosing<br>phase is completed.<br>(switching to the second dosing phase, or<br>and of dosing process in case of single-<br>phase dosing process.) | Selection of output number or outputs<br>numbers enabled during the first<br>dosing phase (and for an active<br>weighing platform). |

| Threshold accurate dosing                                                                | Output No                                                                                                                            |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Mass value for which the second dosing<br>phase is completed.<br>(End of dosing process) | Selection of output number or outputs<br>numbers enabled during the second<br>dosing phase (and for an active<br>weighing platform). |

#### • Dosing status

The dosing status window displays in the weighing window the current status of dosing process on an active weighing platform.

Status of dosing

COMPLETED

#### **Description:**

| Dosing status | Dosing process status:<br>DOSAGE – dosing in progress<br>TERMINATED – dosing terminated by pressing STOP<br>button.<br>STOP – dosing stopped,<br>COMPLETED – Dosing completed. |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### • Simulation of inputs operation

Inputs simulation enables simulating the operation of a function assigned to an individual input. See chapter 8.3.3 of this user manual.

| Simulation of inputs |     |                                        |
|----------------------|-----|----------------------------------------|
| zeroing              | -▶[ | Button of function assigned to input 1 |
| None                 | →[  | Button of function assigned to input 2 |
| 📫 start dosing       | -▶[ | Button of function assigned to input 3 |
| 夫 stop dosing —      | →[  | Button of function assigned to input 4 |

#### • Dosing simulation

The bottom section of the window comprises buttons for starting and stopping dosing process. They enable starting and stopping the dosing process independently on the functions assigned to the inputs.



# 8.4.2. Checkweighing

LOOKHI

Start option Features and press checkweighing button to open a window enabling checkweighing setting for a weighing platform that is active in the weighing window.

| Application Settings 💌    | Checkweighing |                |                                       |      |
|---------------------------|---------------|----------------|---------------------------------------|------|
| Parameters                | LO threshold  | 5 [kg]         |                                       |      |
| _L                        | Min threshold | 100 [kg]       | $\bigcirc \bigcirc \bigcirc \bigcirc$ |      |
| Dosage                    | Max threshold | 120 [kg]       |                                       |      |
|                           |               |                |                                       |      |
| Checkweighing             |               |                |                                       |      |
| ි <b>ිා</b><br>I/O status |               |                |                                       |      |
|                           |               |                |                                       |      |
|                           |               |                |                                       |      |
|                           |               |                |                                       |      |
|                           |               |                |                                       |      |
|                           |               |                |                                       |      |
|                           | nefresh 🗧     | Read from file | Save to file                          | Save |

Fig. 25 Checkweighing settings window

## **Description of fields:**

| LO threshold  | Value of net mass, above which the checkweighing function is active                                                                                                                                        |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Min threshold | Mass value for determining the value of tolerance thresholds.<br>- below the <b>Min threshold</b> value the MIN limit is signaled<br>between the values of <b>Min threshold</b> - <b>Max threshold</b> the |  |
| Max threshold | <ul> <li>Detween the values of Min threshold - Max threshold the OK limit is signaled.</li> <li>above the Max threshold value the MAX limit is signaled.</li> </ul>                                        |  |
## Signaling function with limits:

| $\Theta O O$                 | MIN |
|------------------------------|-----|
| 000                          | ОК  |
| $\bigcirc \bigcirc \bigcirc$ | МАХ |

#### Caution:

The checkweighing signalization in the software is accessible on setting the functions to outputs.

## 8.4.3. Input/output status

Start option Features and press <sup>I/O status</sup> button to open a window enabling setting inputs signalization and setting outputs status.



Fig. 26 Window of inputs and outputs status

Software inputs and outputs are numbered according the weighing module documentation.

| input / output enabled  |
|-------------------------|
| input / output disabled |

The simulation of output operation is possible on pressing the output number which is activated immediately, provided there is no function assigned to the output.

The simulation of inputs is accessible in the dosing window.

## 9. WEIGHING

Place weighed load on the weighing platform. As the stable measurement pictogram  $\blacktriangle$  is displayed, read the measurement result.

#### Caution:

In case the weighing module MW-04 cooperates with more than one weighing platform, pay attention that the weighing window previews the corresponding weighing platform for reading mass of weighed loads.

#### 9.1. Principles of use

In order to ensure a long lasting operation and correct measuring of weighed loads it is advised to:

• Place loads to be weighed on the weighing platform gently and avoiding shocks:



• Place the loads in the centre of the weighing platform (eccentric weighing errors are outlined in the standard PN-EN 45501 sections 3.5 and 3.6.2):



• Do not load the weighing platform with concentrated force:



• Avoid side loads and particularly side shocks:



## 9.2. Zeroing

In order to zero the mass indication of an active weighing platform in program

"**MwManager**" press button in the weighing window (located in the the top right corner of the window) or enable the zeroing function.

The display should indicate mass equal to zero and pictograms:  $\bullet 0 \bullet$  and  $\bullet \bullet$ .

Zeroing is equivalent to setting a new zero point comprehended by the scale as a precise zero point. Zeroing is possible only for stable display status.

Zeroing can be carried out by pressing the external push-button connected to an input configured to zeroing function.

## Caution:

Zeroing display status can only be carried out within the  $\pm 2\%$  of the maximum scale capacity. If a zeroed indication is beyond the range  $\pm 2\%$  of maximum scale indication, the display indicates an error message **Err2**.

The procedure of defining inputs – buttons is described in chapter 8.3.3 of this user manual.

## 9.3. Tarring

In order to determine net weight of a load weighed on an active weighing platform , place a container on the weighing platform and on indication

stabilization press button or enable tarring function. The display should indicate mass equal to zero and pictograms: **Net** and **L**. The scale is tarred.

While using the tarring function pay attention not to exceed the maximum measuring range (maximum capacity) of a scale. When taking the load and its packaging off the weighing platform the display indicates value that is a sum of tarred weights preceded by minus sign.

Tarring can be carried out by pressing the external push-button connected to an input configured to tarring function.

#### Caution:

Tarring cannot be carried out if the scale display indicates zero or negative values. In such case the display indicates an error message **Err3**.

The procedure of defining inputs - buttons is described in chapter 8.3.3 of this user manual.

## 9.4. Weighing on dual range scales

Switching between the  $1^{st}$  range and the  $2^{nd}$  range takes place automatically, without operator's interference, (and at the point of reaching the Max of the  $1^{st}$  range).

Weighing in **range II** is signaled by displaying pictogram  $\rightarrow |2|$  in the top left corner of the display. When unloading the weighing platform, the indication returns to zero. Weighing in the  $2^{nd}$  range continuous until the indication returns to zero indication.



Fig. 27 Weighing window in the 2<sup>nd</sup> range

Return from weighing in the **II range** to weighing in the **I range** takes place automatically on removing the weighed load from the weighing platform and at the moment the mass indication returns to AUTOZERO zone – confirmed by pictogram  $\bullet 0 \bullet$  appearing on the display. Then the pictogram of the **II range**  $\bullet |2| \bullet$  disappears from the display and the scale automatically returns to weighing with the accuracy of the **I range**.

## 9.5. Toggling between weighing units

Change of a weighing unit of an active weighing platform is carried out in a weighing window of the "**MwManager**" software by pressing the magnetic structure of the software by pressing window of the software by pressing button in user parameters.



Fig. 28 The main window with changed weighing unit

## Selection options:

- If the basic weighing unit is [kg], the following units are accessible: [kg, lb, oz, ct, N, g]. For verified scales, [lb, oz, N] are not accessible;
- If the basic weighing unit is [g], the following units are accessible: [g, kg, lb, oz, ct, N] For verified scales, [lb, oz, N] are not accessible.

# **10. SCALE PARAMETERS**

Users can adjust the scale to ambient conditions (filtering level) or user needs (autozero operation).

The parameters are grouped in tab **Parameters** >User parameters and they are accessible and editable for an individual weighing platform in the weighing window.

## List of scale parameters:

- Autozeroing
- Median filter
- Filter

## 10.1. Autozero function

In order to ensure precise scale indications the software "AUTOZERO" function has been introduced. It is designed to automatically control and correct scale's zero indication.

When autozero function is enabled, the subsequent results are compared in constant time intervals. If two subsequent results differ less than the declared AUTOZERO range, e.g. 1 interval, the scale automatically sets new zero point and pictograms of stability –  $\square$  and precise zero –  $\Rightarrow 0 \leftarrow$ are displayed.

If AUTOZERO is enabled, then each measurement always starts from the precise zero point. There are, however, cases in which the function may disturb the measuring process. It is for instance while very slow loading the weighing platform (for instance pouring a load). In such case the zero correcting system can correct the actual indication of load placed on the scale's weighing platform.

## Procedure:



- Enter the group of **User parameters** window by pressing User parameters button, choose parameter **<Autozeroing>** and set its appropriate value.
  - NO autozero disabled
  - YES autozero enabled

#### 10.2. Median filter

The intended use of the median filtering is eliminating short lasting interference of impulse character (e.g. mechanical shocks).

#### Procedure:

• Enter the group of User parameters window by pressing

1

User parameters button, select **<Median filter>** parameter and determine its value.

#### Accessible settings:

None - median filter disabled 0.5, 1, 1.5, 2, 2.5 - median filter enabled

#### 10.3. Filter

The intended use of the averaging filter is adapting the scale to ambient conditions at a workstation.

#### Procedure:

• Enter the group of User parameters window by pressing

1

User parameters button, select parameter **<Filter>** and determine its value.

#### Accessible settings:

None, Very Fast, Fast, Average (normal), Slow

## Caution:

The higher filtering level, the longer stabilization time of measurement result.

## **11. CHECKWEIGHING**

Checkweighing is a function that aims at precise weighing a sample with pre-defined low and high weighing limits (checkweighing thresholds (LO – sample mass too low, HI – sample mass too high, OK – sample mass correct).



Checkweighing

Such software solution is a very good means for quick mass value evaluation with no need for continuous monitoring the measurement result. The above mentioned weighing status (LO, OK, HI) have their graphic visualization presented on scale's display.

The status is also indicated by optical signalization or controlled by the set of external devices.



Fig. 29 Presentation of intervals for checkweighing function

## Caution:

The means of enabling the checkweighing mode and its signalization are described in chapter 8.4.2 of this user manual.

## 11.1. LO threshold

Parameter **<LO threshold>** determines the net mass value indicated on the display which activates operation of outputs for status MIN, OK, MAX.

## Procedure:

 Enter parameter <LO threshold>, determine the value of LO limit and press

**Enter** button. Save changes by pressing button. The changes are saved in weighing module permanent memory.

## 11.2. MIN/MAX threshold

Parameter **<MIN threshold>** in checkweighing mode determines the net weight limit for switching between the status from MIN to OK.

Parameter **<MAX threshold >** in checkweighing mode determines the net weight limit for switching between the status from OK to MAX.

Output signalization is activated over the set net value of LO threshold.

## Procedure:

 Enter parameter < MIN threshold > or < MAX threshold >, determine the limit value and press Enter key. Save changes by pressing

button. The changes are saved in weighing module permanent memory.

## 12. DOSING

Dosing is a function enabling precise load measurement to a pre-defined target value.



Parameter **<Threshold fast dosage>** determines in fast (bulk) dosing the value of net mass below which one or a few outputs are enabled. (the outputs that are assigned to bulk dosing)

Parameter < **Threshold accurate dosing >** determines in slow (fine) dosing the value of net mass below which, but above the value of the bulk dosing limit, one or a few outputs are enabled. (the outputs that are assigned to fine dosing).

## Procedure:

• Enter parameter < Threshold fast dosage > or < Threshold accurate dosing >, determine the limit value and press Enter button. Save

| changes by pressing | H | Saving | button. |
|---------------------|---|--------|---------|
|---------------------|---|--------|---------|

• The changes are confirmed by a message:



- If any changes in limits values are introduced and but not saved, then it is possible to preview the currently set limits by pressing
- The readout is confirmed by a message:



#### Caution:

Description and parameters of dosing mode is described in chapter 8.4.1 of this user manual.

## **13. PARAMETERS IN FILE**

"**MwManager**" software enables saving set parameters in a file format \*.sav. The function can be used for saving weighing module settings in a backup copy, which is restorable in case of module defect or further use of the parameters while configuring larger number of weighing modules.

| 🔍 MwManager 🛛 State: Cor   | nected to MW-04       |                |                 |            |
|----------------------------|-----------------------|----------------|-----------------|------------|
| RADWAG                     |                       | 0.0            |                 |            |
| Application Settings 💌     | User parameters       |                |                 |            |
| Parameters                 | Autozeroing           | Yes            |                 |            |
|                            | Веер                  | Yes            |                 |            |
| User parameters            | Median filter         | 0,5 💉 [s]      |                 |            |
| Set Communication          | Filter                | Very Fast      |                 |            |
| <b>\$</b>                  | Current unit          | Change         |                 |            |
| Functions of I / O         |                       |                |                 |            |
| 8                          |                       |                |                 |            |
| 4                          |                       |                |                 |            |
| 8                          |                       |                |                 |            |
| ADC                        |                       |                |                 |            |
| F Features                 |                       |                |                 |            |
|                            |                       |                |                 |            |
|                            | 🥏 Refresh             | Read from file | Save to file    | Save       |
| 🔄 Start Time: 2013-03-13 ( | 08:18:30 🙆 Software V | ersion: 1.1    | Version 1.0.3.1 | 0 13:32:45 |

Fig. 30 An instance of a window with accessible option for saving and reading a file.

#### File format:

MW04\_(factory number)\_YYYY-MM-DD\_HH-MM.sav

## 13.1. Saving to file

#### Procedure:

- As the weighing module parameters are set, press Save to file button to save them in a file.
- Then, using system operation window browse for file saving directory, and press save button.

| save As                                                                                                                                                                |       | ×        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| Search Save                                                                                                                                                            |       | Q        |
| Organize 🔻 New folder                                                                                                                                                  | BB •  | 0        |
| <ul> <li>★ Favorites</li> <li>↓ Param</li> <li>↓ Libraries</li> <li>↓ Documents</li> <li>↓ Music</li> <li>➡ Pictures</li> <li>➡ Videos</li> <li>♦ Homegroup</li> </ul> |       |          |
| t Computer *                                                                                                                                                           |       |          |
| File name: MW-04_8745852_2013-03-12_14-51                                                                                                                              |       | -        |
| Save as type: sav files (*.sav)                                                                                                                                        |       | •        |
| Hide Folders                                                                                                                                                           | Cance | <b>:</b> |

Fig. 31 System window "Save as"

 Correctly saved parameters are followed by displaying the below message:



## Caution:

The system window look depends on installed OS version, and may differ from the one visible in Fig.30.

## 13.2. Uploading file data

## Procedure:

- In order to upload parameters from a file, press
- Then, using system dialogue window, see fig. 31, select a previously saved file, and press of the button.

Read from file

button,



Fig. 32 System window "Open"

• Next, using window for uploading groups of parameters select one or all parameters to be uploaded to the weighing module.



Fig.33 Window for selecting groups of parameters.

The selected parameters are grouped according to their location in the main software menu.

• Parameters that are correctly uploaded are confirmed by the below message:



## 14. OFFLINE MODE

The **Offline** mode enables starting different software options with no need to connect to a weighing module. This means of connection is created to enable saving parameters without establishing a physical connection to a weighing device.

| Application Settings 🔺 | Connection Settings        |     |
|------------------------|----------------------------|-----|
| Connection Settings    | Device Selection           |     |
| Language               | Connection settings        |     |
| Other                  | Connection method: Offline |     |
|                        |                            |     |
|                        |                            |     |
|                        |                            |     |
|                        |                            |     |
|                        |                            |     |
|                        |                            |     |
|                        | 🐹 Exit 🥖 Conne             | ect |

Fig.34 Window for enabling the Offline mode.

### Procedure:

- On software start, enter connection settings tab and in the connection settings options select **Offline**, and press "**Connect**" button.
- The weighing window displays a message "Offline".



• Set parameters and save them into a file according to description in chapter 13.1 of this user manual.

# **15. ERROR MESSAGES**

| Err2 | - | Value out of zeroing range                                                 |
|------|---|----------------------------------------------------------------------------|
| Err3 | - | Value out of tarring range                                                 |
| Err8 | - | Tarring / Zeroing operation timeout                                        |
| NULL | - | Zero value from A/D converter                                              |
| FULL | - | Maximum measuring range exceeded                                           |
| н    | - | Data to be displayed exceeds maximum display<br>capacity                   |
| LH   | - | Start mass error, indication out of range (from -5% to +15% of start mass) |

# **16. COMMUNICATION PROTOCOL**

#### 16.1. General information

- A. Serial communication protocol "weighing module terminal" is designed for establishing communication between a RADWAG scale and a peripheral device through interfaces: RS232, RS485 and Ethernet.
- B. The protocol consists of commands sent from a peripheral device to the scale, and responses sent inversely.
- C. The responses are sent from the scale on each receipt of a command. Each response is a reaction for a specific command.
- D. Commands which form serial communication protocol enable checking device's status, and trigger its reaction, e.g. obtaining measurement result, etc.

| Command | Description of command                                                             |
|---------|------------------------------------------------------------------------------------|
| Z       | Zero scale                                                                         |
| Т       | Tare scale                                                                         |
| от      | Give tare value                                                                    |
| UT      | Set tare                                                                           |
| s       | Send stable result in basic weighing unit of an active weighing platform           |
| SI      | Immediately send the result in basic weighing unit of an active weighing platform  |
| SP      | Immediately send the result in basic weighing unit of a <i>n</i> weighing platform |
| SIA     | Immediately send the result from all weighing platforms in basic weighing units    |
| SU      | Send the stable result in current weighing unit                                    |
| SUI     | Immediately send the result in current weighing unit                               |
| C1      | Switch on continuous transmission in basic weighing unit                           |
| CO      | Switch off continuous transmission in basic weighing unit                          |
| CU1     | Switch on continuous transmission in current weighing unit                         |
| CU0     | Switch off continuous transmission in current weighing unit                        |

## 16.2. A set of commands recognized by the module

| DH  | Set low checkweighing threshold        |
|-----|----------------------------------------|
| UH  | Set high checkweighing threshold       |
| ODH | Give value of low checkweighing limit  |
| OUH | Give value of high checkweighing limit |
| Р   | Set platform n                         |
| PC  | Send all implemented commands          |

#### Caution:

- 1. Each command has to be terminated with CR LF characters;
- 2. When sending subsequent commands without waiting for a response from a previous one may result in scale losing some of the commands. The best policy for communication is not sending another command until the answer for a former command has been received.

#### 16.3. Response message format

| After receiving an order, the scale can reply w | ith: |
|-------------------------------------------------|------|
|-------------------------------------------------|------|

| XX_A CR LF    | command understood and in progress                                                                                                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XX_D CR LF    | command completed (appears only after XX_A)                                                                                                                       |
| XX_I CR LF    | command understood but not accessible at this moment                                                                                                              |
| XX _ ^ CR LF  | command understood but max range is exceeded                                                                                                                      |
| XX _ v CR LF  | command understood but min range is exceeded                                                                                                                      |
| XX _ OK CR LF | command carried out (completed)                                                                                                                                   |
| ES_CR LF      | command not recognized                                                                                                                                            |
| XX _ E CR LF  | an error occurred on command carrying out (time limit exceeded<br>while waiting for stable measurement result (time limit is scale's<br>characteristic parameter) |

XX - stands for a name of sent command

- substitutes spaces

### 16.4. Description of commands

## 16.4.1. Zero scale

## Format: Z CR LF

Accessible responses:

| Z_A CR LF<br>Z_D CR LF | <ul> <li>command understood and in progress</li> <li>command carried out</li> </ul>                                             |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Z_A CR LF<br>Z_^ CR LF | <ul> <li>command understood and in progress</li> <li>command understood but zeroing range exceeded</li> </ul>                   |
| Z_A CR LF<br>Z_E CR LF | <ul> <li>command understood and in progress</li> <li>time limit exceeded while waiting for stable measurement result</li> </ul> |
| Z_I CR LF              | - command understood but not accessible at this moment                                                                          |

#### 16.4.2. Tare scale

Format: T CR LF

Accessible responses:

| T_A CR LF<br>T_D CR LF | <ul> <li>command understood and in progress</li> <li>command carried out</li> </ul>                                             |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| T_A CR LF<br>T_v CR LF | <ul> <li>command understood and in progress</li> <li>command understood but tarring range exceeded</li> </ul>                   |
| T_A CR LF<br>T_E CR LF | <ul> <li>command understood and in progress</li> <li>time limit exceeded while waiting for stable measurement result</li> </ul> |
| T_I CR LF              | - command understood but not accessible at this moment                                                                          |

## 16.4.3. Give tare value

## Format: OT CR LF

Response: OT\_TARE CR LF - command carried out

Response format:

| 1 | 2 | 3     | 4-12 | 13    | 14   | 15 | 16    | 17 | 18 | 19 |
|---|---|-------|------|-------|------|----|-------|----|----|----|
| 0 | Т | space | tare | space | unit |    | space | CR | LF |    |

Tare - 9 characters with right justification

Unit - 3 characters with left justification

#### Caution:

Tare value is always given in adjustment unit.

#### 16.4.4. Set tare

Format: UT\_TARE CR LF, where TARE - tare value

Accessible responses:

| UT_OK CR LF | - command carried out                                              |
|-------------|--------------------------------------------------------------------|
| UT_I CR LF  | - command understood but not accessible at this moment             |
| ES CR LF    | <ul> <li>command not recognized (tare format incorrect)</li> </ul> |

#### Caution:

Use dot in tare format as decimal point.

# 16.4.5. Send stable result in basic weighing unit of an active weighing platform

Format: S CR LF

Accessible responses:

| S_A CR LF<br>S_E CR LF  | <ul><li>command understood and in progress</li><li>time limit exceeded while waiting for stable measurement result</li></ul>          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| S_A CR LF<br>S_I CR LF  | <ul> <li>command understood and in progress</li> <li>command understood but not accessible at this moment</li> </ul>                  |
| S_A CR LF<br>MASS FRAME | <ul> <li>command understood and in progress</li> <li>response is mass value in basic measuring unit for an active platform</li> </ul> |

Mass frame format which is scale's response:

| 1 | 2-3   | 4                   | 5     | 6         | 7-15 | 16    | 17 | 18   | 19 | 20 | 21 |
|---|-------|---------------------|-------|-----------|------|-------|----|------|----|----|----|
| s | space | stability<br>marker | space | character | mass | space |    | unit |    | CR | LF |

### Example:

S CR LF - command sent from a computer

- S \_ A CR LF command understood and in progress
- S \_ \_ \_ S \_ \_ \_ \_ 8 . 5 \_ g \_ \_ CR LF command carried out, response is mass value in basic measuring unit.

# 16.4.6. Immediately send the result in basic weighing unit of an active weighing platform

Format: SI CR LF

Accessible responses:

SI\_I CR LF - command understood but not accessible at this moment

MASS FRAME - response is mass frame in basic weighing unit for an active platform

Mass frame format which is scale's response:

| 1 | 2 | 3     | 4                   | 5     | 6         | 7-15 | 16    | 17 | 18   | 19 | 20 | 21 |
|---|---|-------|---------------------|-------|-----------|------|-------|----|------|----|----|----|
| s | I | space | stability<br>marker | space | character | mass | space |    | unit |    | CR | LF |

## Example:

**SICR LF** – command sent from a computer

SI\_?\_\_\_\_18.5\_kg\_CRLF - command carried out, immediate response of mass value in basic weighing unit

# 16.4.7. Immediately send the result in basic weighing unit of a *n* weighing platform

Format: **SPn CR LF**, where **n** – weighing platform no. (from 1 to 4)

Accessible responses:

**SPn\_I CR LF** - command understood but not accessible at this moment

MASS FRAME "Pn" CR LF - immediate response of mass value in basic weighing unit for n weighing platform

Mass frame format from **n** weighing platform which is scale's response:

| 1 | 2 | 3     | 4                   | 5     | 6         | 7-15 | 16    | 17 | 17 18 19 |  | 20 | 21 |
|---|---|-------|---------------------|-------|-----------|------|-------|----|----------|--|----|----|
| Ρ | n | space | stability<br>marker | space | character | mass | space |    | unit     |  | CR | LF |

Where:

n - weighing platform number
 Mass - 9 characters with right justification
 Unit - 3 characters with left justification

# 16.4.8. Immediately send the result from all weighing platforms in basic weighing units

Format: SIA CR LF

Accessible responses:

SIA\_I CR LF - command understood but not accessible at this moment

MASS FRAME "P1" ; MASS FRAME "P2" ; MASS FRAME "P3" ; MASS FRAME "P4" CR LF - immediate response of mass value from each of all weighing platforms in basic weighing unit

Mass frame format for each of weighing platforms which is scale's response:

| 1 | 2 | 3     | 4                   | 5     | 6         | 7-15 | 16    | 17 | 18   | 19 |
|---|---|-------|---------------------|-------|-----------|------|-------|----|------|----|
| Ρ | n | space | stability<br>marker | space | character | mass | space |    | unit |    |

Where:

- **n** weighing platform number
- Mass 9 characters with right justification
- Unit 3 characters with left justification

## Example:

Assume the weighing module is connected with two weighing platforms (platform 1, platform 2).

SIACRLF – command sent from a computer

P1\_?\_\_\_\_\_118.5\_g\_\_; P2\_\_\_\_\_36.2\_kg\_; P3\_I; P4\_ICR LF - command understood, immediate responses are mass values from all weighing platforms in basic weighing unit of each of the weighing platform. Where: P3\_I – platform 3 not accessible, P4\_I platform 4 not accessible

## 16.4.9. Send the stable result in current weighing unit

Format: SU CR LF

Accessible responses:

| SU_A CR LF<br>SU_E CR LF | <ul> <li>command understood and in progress</li> <li>time limit exceeded while waiting for stable measurement result</li> </ul> |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| SU_A CR LF<br>SU_I CR LF | <ul> <li>command understood and in progress</li> <li>command understood but not accessible at this moment</li> </ul>            |
| SU_A CR LF<br>MASS FRAME | <ul> <li>command understood and in progress</li> <li>response is mass value in current weighing unit</li> </ul>                 |

Mass frame format which is scale's response:

| 1 | 2 | 3     | 4                   | 5     | 6         | 7-15 | 16    | 17 | 18   | 19 | 20 | 21 |
|---|---|-------|---------------------|-------|-----------|------|-------|----|------|----|----|----|
| s | U | space | stability<br>marker | space | character | mass | space |    | unit |    | CR | LF |

#### Example:

**S U CR LF** – command sent from a computer

S U \_ A CR LF - command understood and in progress

**SU\_\_\_- -\_\_172.135\_N\_\_CRLF** - command carried out, response is mass value in current weighing unit.

## 16.4.10. Immediately send the result in current weighing unit

## Format: SUI CR LF

Accessible responses:

**SUI\_I CR LF** - command understood but not accessible at this moment **MASS FRAME** - response is mass value in current weighing unit

Mass frame format which is scale's response:

| 1 | 2 | 3 | 4                   | 5     | 6         | 7-15 | 16    | 17 | 18   | 19 | 20 | 21 |
|---|---|---|---------------------|-------|-----------|------|-------|----|------|----|----|----|
| s | U | Ι | stability<br>marker | space | character | mass | space |    | unit |    | CR | LF |

## Example:

SUICRLF - command sent from a computer

S U I ? \_ - \_ \_ 5 8 . 2 3 7 \_ k g \_ CR LF – command carried out, response is mass value in current weighing unit

Where: \_ - space

## 16.4.11. Switch on continuous transmission in basic weighing unit

Format: C1 CR LF

Accessible responses:

C1\_I CR LF - command understood but not accessible at this moment

C1\_A CR LF - command understood and in progress

MASS FRAME - response is mass value in basic weighing unit

Mass frame format which is scale's response:

| 1 | 2 | 3     | 4                   | 5     | 6         | 7-15 | 16    | 17 | 18   | 19 | 20 | 21 |
|---|---|-------|---------------------|-------|-----------|------|-------|----|------|----|----|----|
| s | I | space | stability<br>marker | space | character | mass | space |    | unit |    | CR | LF |

## 16.4.12. Switch off continuous transmission in basic weighing unit

#### Format: C0 CR LF

Accessible responses:

- C0\_I CR LF command understood but not accessible at this moment
- C0\_A CR LF command understood and in progress

#### 16.4.13. Switch on continuous transmission in current weighing unit

#### Format: CU1 CR LF

Accessible responses:

| CU1_I CR LF - command understood but not accessible at this mom | ent |
|-----------------------------------------------------------------|-----|
|-----------------------------------------------------------------|-----|

- CU1\_A CR LF command understood and in progress
- MASS FRAME response is mass value in current weighing unit

Mass frame format which is scale's response:

| 1 | 2 | 3 | 4                   | 5     | 6         | 7-15 | 16    | 17 | 18   | 19 | 20 | 21 |
|---|---|---|---------------------|-------|-----------|------|-------|----|------|----|----|----|
| s | U | Ι | stability<br>marker | space | character | mass | space |    | unit |    | CR | LF |

#### 16.4.14. Switch off continuous transmission in current weighing unit

#### Format: CU0 CR LF

Accessible responses:

- CU0\_I CR LF command understood but not accessible at this moment
- CU0\_A CR LF command understood and carried out

## 16.4.15. Set low checkweighing threshold

#### Format: DH\_XXXXX CR LF, where XXXXX – mass format

Accessible responses:

| DH_OK CR LF | - command carried out                            |
|-------------|--------------------------------------------------|
| ES CR LF    | - command not recognized (incorrect mass format) |

16.4.16. Set high checkweighing threshold

Format: UH\_XXXXX CR LF, where XXXXX - mass format

Accessible responses:

| UH_OK CR LF | - command carried out                            |
|-------------|--------------------------------------------------|
| ES CR LF    | - command not recognized (incorrect mass format) |

## 16.4.17. Give value of low checkweighing limit

Format: ODH CR LF

Response: DH\_MASA CR LF - command carried out

Response format:

| 1 | 2 | 3     | 4-12 | 13    | 14   | 15 | 16    | 17 | 18 | 19 |
|---|---|-------|------|-------|------|----|-------|----|----|----|
| D | Н | space | mass | space | unit |    | space | CR | LF |    |

Mass - 9 characters with right justification

Unit - 3 characters with right justification

#### 16.4.18. Give value of high checkweighing limit

Format: OUH CR LF

Response: UH\_MASA CR LF - command carried out

Mass frame format of scale's response:

| 1 | 2 | 3     | 4-12 | 13    | 14   | 15 | 16 | 17    | 18 | 19 |
|---|---|-------|------|-------|------|----|----|-------|----|----|
| U | Н | space | mass | space | unit |    |    | space | CR | LF |

Mass - 9 characters with right justification

Unit - 3 characters with right justification

## 16.4.19. Change platform n

Format: **Pn CR LF**, where **n** – weighing platform no. (from 1 to 4)

Accessible responses:

| Pn_OK CR LF | - command carried out                                  |
|-------------|--------------------------------------------------------|
| Pn_I CR LF  | - command understood but not accessible at this moment |
| ES CR LF    | - command not recognized (incorrect platform number)   |

## 16.4.20. Send all implemented commands

Format: PC CR LF

Response:

PC\_A\_"Z,T,S,SI,SP,SIA,SU,SUI,C1,C0,CU1,CU0,DH,ODH,UH,OUH, OT,UT,PC" - command carried out, terminal sent all implemented commands.

# **17. COMUNICATION MODULE PROFIBUS**

## 17.1. General information

Communication module Profibus ensures exchanging data between a superordinated controlling unit (master) and a weighing module MW-04 (slave) in accordance with protocol Profibus DP.

The superordinated unit (master):

- cyclically reads signals from the weighing module MW-04,
- cyclically saves status to the weighing module MW-04.

Functions of Profibus communication with the weighing module MW-04:

- Mass readout from the weighing module
- Tarring the weighing module
- Zeroing the weighing module
- Reading module's status
- Reading current weighing unit
- Setting and reading tare value
- Setting and reading LO threshold value
- START / STOP of dosing process
- Setting and reading the value of bulk (fast) dosing threshold
- Setting and reading the value of fine (slow) dosing threshold
- Reading the status of dosing process
- Setting and reading Min threshold value
- Setting and reading Max threshold value

## 17.2. Setting instrument's address in a Profibus network

The address of the weighing module MW-04 in Profibus network has to be set in accordance with module addressing specification. (See point 8.3.2 of this user manual – "Communication settings"). Field *module address* is used to set corresponding address of the device in Profibus network.

#### 17.3. Memory map

| 17.3.1. Output address | 7.3.1. | Jutput addi | 'ess |
|------------------------|--------|-------------|------|
|------------------------|--------|-------------|------|

| Address<br>Offset | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0                 | M1  | M1  | M1  | M1  | T1  | T1  | T1  | T1  | J1  | J1  |
| 1                 | S1  | S1  | LO1 | LO1 | LO1 | LO1 | M2  | M2  | M2  | M2  |
| 2                 | T2  | T2  | T2  | T2  | J2  | J2  | S2  | S2  | LO2 | LO2 |
| 3                 | LO2 | LO2 | M3  | M3  | M3  | M3  | Т3  | Т3  | Т3  | Т3  |
| 4                 | J3  | J3  | S3  | S3  | LO3 | LO3 | LO3 | LO3 | M4  | M4  |
| 5                 | M4  | M4  | T4  | T4  | T4  | T4  | J4  | J4  | S4  | S4  |
| 6                 | LO4 | LO4 | LO4 | LO4 | -   | -   | -   | -   | MIN | MIN |
| 7                 | MIN | MIN | MAX | MAX | MAX | MAX | DS  | DS  | DS  | DS  |
| 8                 | DW  | DW  | DW  | DW  | -   | -   | -   | -   | -   | -   |
| 9                 | -   | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| 10                | SK  | SK  | ST1 | ST1 | ST2 | ST2 | ST3 | ST3 | ST4 | ST4 |

#### Tab. 1

M1 - Mass for weighing platform no. 1, 4 bytes, float

- M2 Mass for weighing platform no. 2, 4 bytes, float
- M3 Mass for weighing platform no. 3, 4 bytes, float
- M4 Mass for weighing platform no. 4, 4 bytes, float
- **T1** Tare for weighing platform no. 1, 4 bytes, float
- T2 Tare for weighing platform no. 2, 4 bytes, float
- **T3** Tare for weighing platform no. 3, 4 bytes, float
- T4 Tare for weighing platform no. 4, 4 bytes, float
- J1 Current weighing unit for weighing platform no. 1, 2 bytes, word
- J2 Current weighing unit for weighing platform no. 2, 2 bytes, word
- J3 Current weighing unit for weighing platform no. 3, 2 bytes, word
- J4 Current weighing unit for weighing platform no. 4, 2 bytes, word
- S1 Status of weighing platform no. 1, 2 bytes, word
- S2 Status of weighing platform no. 2, 2 bytes, word
- S3 Status of weighing platform no. 3, 2 bytes, word
- S4 Status of weighing platform no. 4, 2 bytes, word

- L01 - LO threshold of weighing platform no. 1, 4 bytes, float LO2 - LO threshold of weighing platform no. 2, 4 bytes, float LO3 - LO threshold of weighing platform no. 3, 4 bytes, float LO4 - LO threshold of weighing platform no. 4. 4 bytes, float MIN - MIN threshold of an active platform, 4 bytes, float MAX - MAX threshold of an active platform, 4 bytes, float DS - Bulk (fast) dosing threshold of an active platform, 4 bytes, float DW - Fine (slow) dosing threshold of an active platform, 4 bytes, float SK - Adjustment status of an active platform, 2 bytes, word ST1 - Process status for weighing platform no. 1, 2 bytes, word ST2 - Process status for weighing platform no. 2. 2 bytes, word ST3 - Process status for weighing platform no. 3, 2 bytes, word
- ST4 Process status for weighing platform no. 4, 2 bytes, word

| Address<br>Offset | 0   | 1   | 2   | 3   | 4  | 5  | 6   | 7   | 8   | 9   |
|-------------------|-----|-----|-----|-----|----|----|-----|-----|-----|-----|
| 0                 | С   | С   | СР  | СР  | Р  | Р  | Т   | Т   | Т   | Т   |
| 1                 | LO  | LO  | LO  | LO  | -  | -  | MIN | MIN | MIN | MIN |
| 2                 | MAX | MAX | MAX | MAX | DS | DS | DS  | DS  | DW  | DW  |
| 3                 | DW  | DW  | -   | -   | -  | -  | -   | -   | -   | -   |
| 4                 | -   | -   | -   | -   | -  | -  | -   | -   | MW  | MW  |
| 5                 | MW  | MW  | -   | -   | -  | -  | -   | -   | -   | -   |

#### 17.3.2. Input address

Table. 2

- **C** Command, 2 bytes, word
- **CP** Command with a parameter, 2 bytes, word
- P Selected (active) weighing platform
- T Tare for a platform, 4 bytes, float
- LO Lo threshold of a platform, 4 bytes, float
- MIN MIN threshold of a platform, 4 bytes, float
- MAX MAX threshold of a platform, 4 bytes, float
- **DS** Bulk (fast) dosing threshold of a platform, 4 bytes, float
- **DW** Fine (slow) dosing threshold of a platform, 4 bytes, float
- MW Mass of a standard for a platform, 4 bytes, float

## 17.4. Description of variables

## 17.4.1. Output variables

Readout of output variables enables obtaining data on instrument's status.

## Caution:

All output values, except for mass, are displayed in adjustment/calibration unit

| Name of output variable                               | address | length<br>[word] | data type |
|-------------------------------------------------------|---------|------------------|-----------|
| mass of platform no. 1                                | 0       | 2                | float     |
| tare of platform no. 1                                | 4       | 2                | float     |
| unit of platform no. 1                                | 8       | 1                | word      |
| status of platform no. 1                              | 10      | 1                | word      |
| LO of platform no. 1                                  | 12      | 2                | float     |
| mass of platform no. 2                                | 16      | 2                | float     |
| tare of platform no. 2                                | 20      | 2                | float     |
| unit of platform no. 2                                | 24      | 1                | word      |
| status of platform no. 2                              | 26      | 1                | word      |
| LO of platform no. 2                                  | 28      | 2                | float     |
| mass of platform no. 3                                | 32      | 2                | float     |
| tare of platform no. 3                                | 36      | 2                | float     |
| unit of platform no. 3                                | 40      | 1                | word      |
| status of platform no. 3                              | 42      | 1                | word      |
| LO of platform no. 3                                  | 44      | 2                | float     |
| mass of platform no. 4                                | 48      | 2                | float     |
| tare of platform no. 4                                | 52      | 2                | float     |
| unit of platform no. 4                                | 56      | 1                | word      |
| status of platform no. 4                              | 58      | 1                | word      |
| LO of platform no. 4                                  | 60      | 2                | float     |
| MIN of an active platform                             | 68      | 2                | float     |
| MAX of an active platform                             | 72      | 2                | float     |
| bulk (fast) dosing threshold of an<br>active platform | 76      | 2                | float     |
| fine (slow) dosing threshold of an<br>active platform | 80      | 2                | float     |

| adjustment status of an active platform | 100 | 1 | word |
|-----------------------------------------|-----|---|------|
| process status of platform no. 1        | 102 | 1 | word |
| process status of platform no. 2        | 104 | 1 | word |
| process status of platform no. 3        | 106 | 1 | word |
| process status of platform no. 4        | 108 | 1 | word |

| Table. | 3 |
|--------|---|
|--------|---|

- mass mass value in current unit is returned
- tare tare value in calibration/adjustment unit is returned
- unit determines current (displayed) weighing unit

| Unit | Byte no. | В5 | B4 | В3 | B2 | B1 | В0 | Dec |
|------|----------|----|----|----|----|----|----|-----|
| g    | gram     | 0  | 0  | 0  | 0  | 0  | 1  | 1   |
| kg   | kilogram | 0  | 0  | 0  | 0  | 1  | 0  | 2   |
| ct   | carat    | 0  | 0  | 0  | 1  | 0  | 0  | 4   |
| lb   | pound    | 0  | 0  | 1  | 0  | 0  | 0  | 8   |
| oz   | ounce    | 0  | 1  | 0  | 0  | 0  | 0  | 16  |
| Ν    | Newton   | 1  | 0  | 0  | 0  | 0  | 0  | 32  |

• status - status - determines scale (platform) status

| Status<br>byte | Task                                              | Dec |
|----------------|---------------------------------------------------|-----|
| 0              | correct measurement (no error message from scale) | 1   |
| 1              | stable measurement                                | 2   |
| 2              | scale in zero indication                          | 4   |
| 3              | scale tarred                                      | 8   |
| 4              | scale in second weighing range                    | 16  |
| 5              | scale in third weighing range                     | 32  |
| 6              | scale reports NULL error                          | 64  |
| 7              | scale reports LH error                            | 128 |
| 8              | scale reports FULL error                          | 256 |

#### Example:

| byte no. | B8 | B7 | <b>B6</b> | B5 | B4 | B3 | B2 | B1 | B0 |
|----------|----|----|-----------|----|----|----|----|----|----|
| value    | 0  | 0  | 0         | 0  | 1  | 0  | 0  | 1  | 1  |

The scale does not report an error, the measurement is stable in the second weighing range.

- LO the value of LO threshold in calibration/adjustment unit is returned
- **MIN** set value of **MIN Threshold** (in calibration/adjustment unit) is returned.
- MAX set value of MAX Threshold (in calibration/adjustment unit) is returned.
- **Bulk (fast) dosing threshold** set value of bulk (fast) dosing threshold (in calibration/adjustment unit) is returned.
- Fine (slow) dosing threshold set value if fine (slow) dosing threshold (in calibration/adjustment unit) is returned
- Adjustment status determines the status of adjustment process

| Adjustment status              | Decimal value |
|--------------------------------|---------------|
| Process not accessible         | -1            |
| Process completed successfully | 0             |
| Process in progress            | 1             |
| Error – out of range           | 2             |
| Error – timeout                | 3             |
| Determining process aborted    | 4             |
| Waiting for data               | 5             |

• Process status – determines the status of dosing process:

| Decimal value of | Process status                 | Byte no. |    |  |
|------------------|--------------------------------|----------|----|--|
| a variable (Dec) | F100655 518105                 | B1       | B0 |  |
| 0                | process disabled<br>(inactive) | 0        | 0  |  |
| 1                | dosing start                   | 0        | 1  |  |
| 2                | dosing stop                    | 1        | 0  |  |
| 3                | end of dosing process          | 1        | 1  |  |

## 17.4.2. Input variables

Saving the input variables in the weighing module MW-04 enables controlling module's operation.

#### Caution:

All input values are set in relation to calibration/adjustment unit.

| Name of input variable       | address | length [word] | data type |
|------------------------------|---------|---------------|-----------|
| command                      | 0       | 1             | word      |
| complex command              | 2       | 1             | word      |
| Complex command parameter    | ers     | _             | _         |
| platform                     | 4       | 1             | word      |
| tare                         | 6       | 2             | float     |
| LO                           | 10      | 2             | float     |
| MIN                          | 16      | 2             | float     |
| MAX                          | 20      | 2             | float     |
| bulk (fast) dosing threshold | 24      | 2             | float     |
| fine (slow) dosing threshold | 28      | 2             | float     |
| mass of a standard           | 48      | 2             | float     |

| Table. | 4 |
|--------|---|
|--------|---|

 command – basic command. Setting of an appropriate command's byte is directly responsible for carrying out a task, in accordance with below table:

| command<br>bytes | task                        | Dec  |
|------------------|-----------------------------|------|
| 0                | Platform zeroing            | 1    |
| 1                | Platform tarring            | 2    |
| 5                | dosing process start        | 32   |
| 6                | dosing process stop         | 64   |
| 8                | Determine start mass        | 256  |
| 9                | Determine adjustment factor | 512  |
| 10               | Save factors                | 1024 |

#### Example:

**0000 0000 0010 0000** – command carried out, dosing process start on an active weighing platform.

• **complex command** - Setting of an appropriate command's byte is directly responsible for carrying out a task, in accordance with below table:

| command<br>bytes | task                                                                       | Dec |
|------------------|----------------------------------------------------------------------------|-----|
| 0                | setting tare value of an active platform                                   | 1   |
| 1                | setting LO threshold value of an active platform                           | 2   |
| 3                | setting MIN threshold value of an active platform                          | 8   |
| 4                | setting MAX threshold value of an active platform                          | 16  |
| 5                | setting the value of bulk (fast) dosing threshold of<br>an active platform | 32  |
| 6                | setting the value of fine (slow) dosing threshold of<br>an active platform | 64  |
| 7                | Setting mass of a standard for an active platform                          | 128 |
| 8                | Setting an active weighing platform                                        | 256 |

#### Example:

**0000 0000 0000 0010** – command carried out, LO threshold set to value given in LO parameter (address 10); See *Table. 4.* 

#### Caution:

A complex command requires setting an appropriate parameter of address from 4 to 48. See Table. 4.

• **platform** – complex command parameter – number of an active weighing platform:

| Parameter decimal value | Weighing platform no. |
|-------------------------|-----------------------|
| 0                       | 1 platform            |
| 1                       | 2 platform            |
| 2                       | 3 platform            |
| 3                       | 4 platform            |

- **tare** complex command parameter tare value (in calibration/adjustment unit)
- LO complex command parameter LO threshold value (in calibration/adjustment unit)
- **MIN** complex command parameter **MIN** threshold value (in calibration/adjustment unit).
- MAX complex command parameter MAX threshold value (in calibration/adjustment unit).
- **bulk (fast) dosing threshold** complex command parameter value of bulk (fast) dosing threshold (in calibration/adjustment unit).
- fine (slow) dosing threshold complex command parameter value of fine (slow) dosing threshold (in calibration/adjustment unit).
- mass of a standard complex command parameter mass of a standard (in calibration/adjustment unit).

#### Caution:

A command or a command with a parameter is executed once on detecting its corresponding byte setting. Should a command with the same byte be re-executed, first the byte must be reset.

#### Example:

| command               | address 1 | address 0 |
|-----------------------|-----------|-----------|
| tarring               | 0000 0000 | 0000 0010 |
| zeroing command bytes | 0000 0000 | 0000 0000 |
| tarring               | 0000 0000 | 0000 0010 |
## MANUFACTURER

OF ELECTRONIC WEIGHING INSTRUMENTS



## RADWAG WAGI ELEKTRONICZNE POLAND, 26 – 600 Radom, Bracka 28

Phone. +48 (48) 38 48 800, fax. + 48 (48) 385 00 10 export@radwag.com www.radwag.com

